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Abstract

In a recent paper, Lee and Moharrami [13] construct a family of metrics (X,,d,) with
| X,,| = N, such that (X, v/d,,) embeds into Ly with constant distortion, but embedding (X, d,,)
into a metric of negative type requires distortion Q(logl/ * N). In this paper, we build on their
analysis, and improve their result by showing an Q(logl/ ® N) lower bound for embedding (X, dy,)
into a metric of negative type. Moreover, we show that this analysis is essentially tight by
constructing a map that has distortion O(log"/® N).

This result implies a lower bound of Q(logl/ ® N) for the integrality gap of the relaxed ver-
sion of Goemans-Linial semidefinite program with weak triangle inequalities for Non-uniform
Sparsest Cut.

1 Introduction

Let us recall the definition of a negative-type metric. A metric (X, d) is said to be of negative-type
if there exists an embedding f : X — Lg such that Vz,y € X : d(z,y) = ||f(x) — f(y)||3. This is
equivalent to saying that (X, \/&) embeds into Lo with distortion 1. By virtue of d being a metric,
for all z,y,z € X, f satisfies,

1£ (@) = F@IIE + 1f () = F)3 = [1f (@) = f(2)II5. (%)

The family of inequalities(x) is known as triangle inequalities. Let s = (vg,...,vx) be a sequence
of vertices, it is easy to verify that the triangle inequalities imply,

k
2 2
Do) = Fimn)l3 > 11F (wr) = f(wo) 13-
i=1
In fact, it is easy to see that these inequalities are equivalent to the triangle inequalities. We denote

the class of all negative type metrics as NEG.

We can relax the inequalities to require that for every sequence of vertices s = (vo, ..., V),

k
O If i) = floimn)lI3 = 1f (k) = flwo)lI3,
1=1
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where the constant C' > 1 is independent of the sequence s. We call these inequalities weak triangle
inequalities (Sometimes, to be unambiguous, we will refer to (%) as strong triangle inequalities). It
is easy to show that f : X — Ly satisfies weak triangle inequalities iff there is a metric (X, d) such
that f is a constant distortion embedding for (X,v/d) into Ly. We will call such metrics (X, d) as
weak negative type metrics (Ideally, we should qualify it with the constant C, but we will drop it
assuming C' = O(1)).

Definition 1.1 A metric (X,d) is a called a weak negative type metric if (X, \/&) embeds into Lo
with constant distortion.

The following question was asked by James Lee[17], [[]] Can every weak negative type metric be
embedded into a negative type metric with O(1) distortion?

In the interest of space, we mention only a few reasons why the above question is interesting. We
refer the interested reader to [13] for more details.

We need to recall the Sparsest Cut problem. Given a set of vertices V' and two functions cap, dem :
V x V — Rt the goal is to find a cut (9,S) in V that minimizes the following ratio

> zesyes cap(@,y)
er&yeg dem(x7 y)

Goemans and Linial independently suggested the following SDP relaxation with triangle inequalities
for Sparsest Cut.

. E . o 2
min B [cap(z,y) - [[ve — vyl3]

bject to E_[d lve = wyli3] =1
subject to yev[em(%y) lva — vyll3]

)

lva = wyll3 + lloy = v=l3 > lvw —v:l3 Vr,y,z € V(G). (1)

The integrality gap of (f) is the minimum distortion required for embedding an N-point negative
type metric into L; (where |V| = N). Building on the work of [3], it was shown in [2] that this gap
is at most O(y/log N loglog N) (following an earlier bound of [5]). SDP relaxations with triangle
inequalities have also resulted in improved approximation ratios for several other problems [1, 4, 10].

Interestingly, for all the above results, the weak triangle inequalities are actually sufficient. A posi-
tive answer to question 1 would have implied that the optimal value (and hence the approximation
guarantee) for () would change only by a constant factor if we replaced the triangle inequality
constraints by weak triangle inequalities.

A positive answer would also have simplified the task of proving a lower bound on the integrality
gap for (1) to proving a lower bound for the SDP with weak triangle inequalities (up to constants).
Generally, proving lower bounds against strong triangle inequalities seems to be significantly more
challenging than proving bounds for weak triangle inequalities(7, 6, 8, 9, 12, 11].

The above question was answered in the negative by Lee and Moharrami in [13] and a strong
quantitative lower bound was exhibited.

Theorem 1.2 [13] There is a family of weak negative type metrics (Xn,d,) with |X,| = N such
that embedding (X,,d,) into NEG requires distortion Q(log"/* N).

The Q notation hides a factor of loglog N.



1.1 Owur Results and Contribution

In this paper, we build on the techniques of Lee and Moharrami[13] and give an improved analysis
for embedding the family of metrics constructed in their paper into NEG and prove the following
theorem.

Theorem 1.3 There is a family of weak negative type metrics (Xn,d,) with |Xy,| = N such that
embedding (X, dy,) into NEG requires distortion Q(log”® N).

Our result implies that the integrality gap for () with weak triangle inequalities (instead of strong
triangle inequalities) is Q(log”® N). We note that this lower bound was the best in the literature
until the very recent work of [16] that shows an almost tight lower bound of Q(y/Togn) . Still, our
result is incomparable to [16] as they only show a lower bound for embedding a weak negative type
metric into L; (Note that NEG does not embed isometrically into Ly [11]).

The lower bound example in [13] is a certain graph G, composed with itself several times according
to a well-defined graph product. It has been shown in [13] that the shortest path metric on the
product graph is a weak negative type metric. The core of the lower bound result is an analysis of
the distortion of an ‘efficient’ embedding of G into NEG. We give an improved analysis of such an
embedding of G to prove our result.

Moreover, we show that for the particular family of metrics constructed, the above analysis is tight
up to a factor of O(loglog N).

Theorem 1.4 For the metrics (X, dy) from theorem 1.3, there is an embedding into NEG that
has distortion O(log"® N).

To construct these embeddings, we use some new and interesting ideas. In particular, we show
that the embedding composition that was introduced in [13], to construct embeddings for product
graphs, preserves strong triangle inequalities. Moreover, for the base graph G, we construct an
embedding with an optimal trade-off between efficiency and distortion.

1.2 Techniques

Our work is built on the techniques from [13]. Below, we describe some of the main ideas in the
paper.

Construction. We work with the same construction as in [13]. Here, we give a quick, informal
description of their construction.

First let us define a graph product that we will require. Given a graph G with two vertices labeled
s and ¢, we define G9% inductively. G2 = G, G2+ is obtained by replacing each edge in GF
by a copy of G with s and ¢ in place of the end points of the edge.

Let @, the m dimensional hypercube, and let B,,, R,, be the nodes with even and odd parity,
respectively. Now construct the graph H,, as follows: We place m copies each of B,,, Ry, alternat-
ingly

BWRML BRI RER) - glm) pim) (1)
and add hypercube edges between adjacent pairs of layers. Furthermore, we add two vertices s and

t and connect them to the vertices of the first and the last layer respectively using paths of length
m. Denote this graph as H,,. This graph has been referred to as “string of cubes graph” in [13].



Our final metric is the shortest path metric on H2* for some appropriate choice of k, m.

Efficiency. An important concept in the proof is the idea of efficiency [15, 13]. Consider a sequence
of points {z1,...,z;} along with a distance function d. We say that the sequence {z;} is e-efficient

(with respect to d) if
k—1

Y d(wiwi) < (1+e)d(wr, ).

i=1
Note that if d satisfies the triangle inequality, the left side is at least d(xy,x)). This notion of
efficiency can be naturally extended to a distribution over sequences.

Lee and Moharrami[13] show that if an embedding of G?* into any metric space has distortion D,
it must contain a copy of the graph G with an embedding that is e-efficient for ¢ = O(% log D)).
Taking k to be sufficiently large, we can assume that we have an e-efficient embedding for € small
enough. It then suffices to show that an efficient embedding of H,, into NEG must have high
distortion.

Strengthened Poincaré Inequality. The classical Enflo’s Poincaré inequality for the hypercube
{0,1}™ states that, given f : @, — R, the following inequality holds:

E (f(z) - f@)*<m- B (f(z) = flz ®ex))?,

TEQm TEQm,kE[m]

where ej, denotes the bit string with all zeros except a one in the k'™ position.

This inequality can be easily extended to functions f : Q,, — Lo by integrating,

B @ - @ <me B f@) - feoa)®

Given an efficient embedding f : H,, — NEG, we can restrict f to each copy of Q,, in H,, to obtain
embeddings f; : Q. — Lo. We will apply Poincaré’s inequality to F' = E; f; in order to obtain a
lower bound on the distortion of the embedding.

2 Construction

2.1 Recursive Composition

We recall the definition of the @ operation from [13] which is an extension of the definition in [15]).
An s-t graph G is a graph which has two distinguished vertices s(G),t(G) € V(G). We define the
length of an s-t graph G as len(G) = dg(s,t). Throughout the paper, we will only be concerned
with symmetric s-t graphs, i.e. graphs for which there is an automorphism which maps s to t. We
assume that all s-t graphs are symmetric in the following definitions. A marked graph G = (V, E)
is one which carries an additional subset Ej/(G) C E of marked edges. Every graph is assumed to
be equipped with the trivial marking Ej/(G) = E(G) unless a marking is otherwise specified.

Definition 2.1 (Composition of s-t graphs) Given two marked s-t graphs H and G, define
H © G to be the s-t graph obtained by replacing each marked edge (u,v) € Ep(H) by a copy of G.
Formally,

e V(H2G)=V(H)U(EM(H)x (V(G)\{s(G),1(G)})) -

o For every edge (u,v) € E(H)\ Eyn(H), there is a corresponding edge in H © G.



e For every edge e = (u,v) € Ey(H), there are |E(G)| edges,

{((e;v)s (e,02)) [ (v1,02) € B(G) and 1,05 ¢ {5(G),1(G)} | U
{(w(ew) (@) w) € B@} U {((ew)v) | (w,4G) € B@)}
o Of all the edges introduced in the previous step, the ones corresponding to marked edges in G
are precisely the marked edges in H © G.
s(HoG)=s(H) and t(H© G) =t(H).

If H and G are equipped with length functions leng,leng, respectively, we define len = lengpa as
follows. Using the preceding notation, for every edge e = (u,v) € Ep(H),

len ((e,v1), (e,v2)) i |(EH(H(;’1( ))|eng(v1,vz)
len (u, (e, w)) = dlenc'(e'EH()‘i Slens(s(G). )
B lengr(e)
len ((e,w),v) = TG (H)’t( ))Ieng(w,t(G))

This choice implies that H © G contains an isometric copy of (V(H), djen,,)-

Definition 2.2 (Recursive composition) For a marked s-t graph G and a number k € N, we
define G9F inductively by letting G2° be a single edge of unit length, and setting GF = G9*—1 o G.

The following result is straightforward.

Lemma 2.3 (Associativity of @) For any three graphs A, B,C, we have (A2 B)o C = A©
(B @ C), both graph-theoretically and as metric spaces.

Definition 2.4 (Copy of a graph) For two graphs G, H, a subset of vertices X C V(H) is said
to be a copy of G if there exists a bijection f : V(G) — X with distortion 1, i.e. dy(f(u), f(v)) =
C - dg(u,v) for some constant C > 0.

Now we make the following two simple observations about copies of H and G in H © G.

Observation 2.5 The graph H @G contains |En(H)| copies of the graph G, one copy correspond-
ing to each marked edge in H.

Observation 2.6 The subset of vertices V(H) C V(H @ G) form an isometric copy of H.

Let G be an s-t graph G, (X, d) a metric space, and consider a mapping f : V(G) — X. Let Ps+(G)
be the set of all s-t shortest-paths in G and let p be a measure on Py = P (G). We say that f
is e-efficient with respect to u if it satisfies

B S df < (1+2)d(f(s), F (1))

R uvey

ot



For a marked s-t graph G, we define its marked length by
lenps(G) = min Z leng(u, v).

YEPs,
>t uvey:(u,v)€EpM (G)

Now we present, the coarse differentiation theorem that we need from [13]. A proof is available in
the conference version[14].

len(G)
there ewists a k = O(% log D) such that the following holds. For every metric space (X, d), distri-
bution p on s-t shortest paths and a mapping f : V(G®k) — X with distortion D, there exists a
copy of G in GOF such that f|q is e-efficient with respect to .

Theorem 2.7 [13] Let G be a marked s-t graph. Then for any D > 1 and € > 2D (1 - IenM(G)),

2.2 Graph construction

The construction is identical to the one in [13]. We will refer to the graphs H,, described in Section
1.2. We use [@,,]; to denote the i*" copy of Q,, in H,,, and for a vertex z € V(Q,,), we use [z]; to
denote the copy of z in [@,];- For a directed edge € = (u,v), we define f(€) = f(u) — f(v).

For m € N, we define the graph I, as follows. We begin with a copy of H,,, where all the edges are
marked. Then, we relabel the vertices s and ¢ in H,, as s’ and t'. Next, we add two distinguished
vertices s and ¢ and connect s to s’ and t to ¢’ by an edge of length m™2. These new edges are
unmarked. Finally we replace each path between s’ and [Q,,]1, and ¢ and [Q;,],, with an edge of
length m.

We construct I, from I, by replacing each marked edge e € FEj(I,) with a path of length

Tm?2len(e), all of whose edges are marked, and have length #, where 7 € N is a universal constant.

Our final construction is of the form I %k for appropriate choices of m, k € N. We equip these graphs
with the shortest-path metric, which we denote d,, ;. In [13] the following theorem was proved.

Theorem 2.8 [13] There exists a map f : (12, \/dp 1) — Lo, such that dist(f) < 1.

This theorem was proved by taking an embedding of the base graph, fm, into Lo with constant
distortion and reducing the distance between all pairs of vertices except for the distance between s
and t. Formally, they defined f9, the é-contraction of the map f, to be

(f(v) = f(s)) - (f(t) — f(s))
Fov) =6f(v) +(1-9) (f(t) = f(s))-
£ (@) = f(s)ll2
It was shown that, for some constant §, the mapping f° is efficient and has constant distortion.
They used this embedding of the base graph and constructed an embedding for the whole graph
that satisfies weak triangle inequalities.

In this paper, we take an efficient embedding of the base graph and combine it with another
embedding that has low distortion to construct an embedding that has both low distortion and low
efficiency (Theorem 2.10). Then, we show that the recursive composition of embeddings into Lo
that was introduced in [13] preserves the strong triangle inequalities to prove Theorem 2.9.

Theorem 2.9 For m > 1 and some k = O(y/mlogm), any embedding of f%k into NEG requires
distortion Q(log”® N), where N = |V (I2F)| = 20(mk)

Theorem 2.10 There exists  map f : 19 — NEG, such that dist(f) < min(k. v/)
S 10g1/3 N, where N = |V([%k)| — 90(mk)



3 Lower bound for NEG embedding

We will use Theorem 2.7 to reduce our task to proving lower bounds on efficient embeddings. Let
tm be the uniform measure over s-t shortest paths in H,, of the form

(8y..., [x]1, [z ® ex]1, [T]2, [z ® er]ay - - -y [T]m, [ B ek)m, -, 1),

where k € {1,2,...,m} and = € Q,, are chosen uniformly at random.

As in [13], we intend to apply Enflo’s Poincaré inequality to the average of the embeddings for
Q@ obtained by restricting our embedding for H,, to [@Qm]o- Thus, we need to upper bound
the average squared length of the edges and lower bound the average squared distance between
anti-podal points, in the average embedding.

The following lemma, proved in [13], lower bounds the correlation between the embeddings for
anti-podal points. A proof has been included in the Appendix for completeness (Section A.1).

Lemma 3.1 [13] For any non-expanding map f : V(H,,) — NEG with distortion at most D and
i,j € [m] such that |i — j| < g5,
_ _ m
(f(lz]s) = f(zL), £((2ly) = £((213)) 2 555

The next lemma upper bounds the average correlation between the embeddings for edges of Q..
This lemma, is at the heart of the distortion lower bound and improves on a similar lemma from
[13]. We defer the proof to the Appendix (Section A.1).

Lemma 3.2 For any c-efficient non-expanding map f : V(Hp) — NEG, and for any | < 7, there
exists an index p € [m] such that:

E E  (f([&). f(e) =0 (17" +e).

EEL(Qm) 1,j€[p,p+I-1]

Assuming the two lemmas above, we can now prove that an efficient embedding of H,, has high
distortion.

Lemma 3.3 There is some § > 0 such that every \/‘%-eﬁicz’ent embedding of H,, into NEG has
distortion Qs(m'/?).

Proof: Let! = |3} | in Lemma 3.2 above and use the index p to define F(z) = Eicpp 1] fi(z).
Thus, we get
D
E [F@P=0(=+ 5) :
LB, IF@r=o (7
From Lemma 3.1, we get Vi,j € [p,p+ 1 — 1], (fi(x) — fi(Z), f;(x) — f;(Z)) > 5. Averaging this

over 7,7 and z, we get
m
E ||F(z)-F@)|?* > -=.
B, IF@) - F@)? =

Now we can use the strengthened Poincaré’s inequality for the cube that states that E,cy (g, [ F/(%)—
F(2)|? < mEgep(q,) IF(@)|*. Plugging in, we get 2 <m - (2 +¢).

This implies that for some & = we must have D = Qs(y/m). ]

6
Vm?



Since an efficient embedding of H,, (and hence fm) must have high distortion, we can now use
Theorem 2.7 in order to conclude that any embedding of I2*¥ must have high distortion.

Theorem 3.4 For m > 1 and some k = ©(y/mlogm), any embedding of Ik into NEG requires
distortion Q(logl/3 N) where N = ]V(I%k)\ = 20(mk)

Proof: First, suppose f : I;%k — NEG has distortion at most y/m. By Theorem 2.7, there

must exist a copy of I, which is 2\%L—efﬁcient with respect to u, (we pick k& = ©(y/mlogm)

appropriately). Since I, contains an isometric copy of H,,, we can further restrict this map to

obtain an embedding of H,, into NEG. It is easy to verify that the map f|g,, is \/%—efﬁcient.

By Lemma 3.2, this embedding must have distortion Q(y/m). Also, log N = O(m*?logm) and

1/
hence f has distortion at least Q(y/m) = Q <llgggk/;]]vv) . ]

4 Upper Bound for Distortion

We refer to the exact construction of the graph as defined in Section 2.2. We present two differ-
ent embeddings of the base graph, where one of them has low distortion with constant efficiency
from [13], and the other one is efficient but has high distortion. Later we combine these two em-
beddings to obtain an embedding obtain a trade-off between efficiency and distortion. We use the
@-composition from [13] to construct an embedding for the iterated graph based on the embed-
ding of fm We show that if the embedding for the base graph satisfies strong triangle inequalities
then the embedding for the iterated graph also satisfies strong triangle inequalities. Finally, we
prove a bound on the total distortion of the resulting embedding. Our main contributions in this
section are 1) proving that the composition preserves strong triangle inequalities, 2) constructing
an embedding with high efficiency and distortion O(y/m) for the base graph, and 3) combining
this embedding with the embedding from [13] to obtain an embedding for the base graph with the
optimal trade-off between efficiency and distortion. For completeness, we repeat some of the proofs
and definitions from [13].

In the rest of this section, we often work with I, instead of directly working with fm.

4.1 Embedding of the Base Graph into [,

In this section we borrow the definition of f and extension to subdivision from [13]. We start by
presenting one of the tools that we use to embed I,,, into L.

Randomly extending to a subdivision. Let G be a metric graph, and for h € N, let G}, denote
the metric graph where every edge e € E(G) is replaced by a path of h edges, each of length
len(e)/h. Orient each e € E(G), and denote the new path between the endpoint of e = (u,v) by
{u = P.(0), P.(1),...,P.(h) =v}.

Given any subset S C V(G), we define a random subset exty,(S) € V(G},) as follows. Let { X }ecp(a)
be a family of i.i.d. uniform [0, 1] random variables, and put

. h—1 1
su(9)-50 U {Po:x <" s+ Tsm).
(u,v)EE(G)



It is easy to check that the distribution of ext(.S) does not depend on the orientation chosen for the
edges of G. The preceding operation corresponds to taking a cut S C V(G) in the original graph,
and extending it to G}, in the following way: For every edge (u,v) € E(G) that is cut by S, we cut
the new path from u to v in G, uniformly at random.

Now, given a cut measure u, we define the extension & to be the cut measure on Gj, defined by
En(p)(S) = n(SNV(G)) - Pr(S = extn (SN V(G))),

for every subset S C V(Gy). By abuse of notation, given a mapping f : V(G) — L1, we will use
Enf : V(G) = Ly to denote the mapping which arises from constructing a cut measure s from f,
applying &, and then passing back to an Lj-valued mapping.

Lemma 4.1 [13] For any graph G and h € N, the following holds. For every f : V(G) — L1, we
have

dist(&E f) < 5 - dist(f).

A proof has been provided in the Appendix (Section A.2).

We continue by defining a cut measure pu,, on H,,, which is the sum of the following three measures.

iver: These cuts are the only cuts that separate s from ¢. For any 0 < k < 4m — 1, we assign weight
% to the cut
S={v:veV(Hpy),dg, (s,v) < (k+1)+m 2}

We also put weight m~2 on the cuts {s} and {t}.

thor: These cuts are the hypercube cuts and they do not separate s from ¢. For any integer
1 <k<mandbe{0,1}, we put weight i on the cut

S = {[m]l cx € {0,1}" x, =b,i € [m]} .
psi: The cut measure puts weight 7 on the single cut {s,t,s',t'}.

One can easily verify that for every edge (u,v) € E(H,,), we have
len(u,v) = d,,, (u,v) + dy,, (u,v) + ds(u, v) . (2)

Let fn, : V(Hy,) — L1 be the embedding corresponding to the cut measure piyer + fihor + fist-

Let h = Tm?, and put G = (Hy)p. Singe H,, is isometric to a subset Aof G, we can be prove the
statement of the lemma for G. Letting f,,, : V(G) — Ly be defined by f,,, = Epfmn-

Lemma 4.2 [13] The map f,, has constant distortion.

Efficient embedding of fm into L;. First we define 7, the corresponding cut measure for
efficient embedding of I, as follows. Recall that, V(Q,,) = B U Ry, where By, and R, denote
the nodes of even and odd parity, respectively. Then @), is bipartite with respect to the partition
(Bm, Rm). Hp, is the graph which consists of 2m layers of the form (1). For every ¢ € @y, and
ke{-m+1,—m+2,...,m}, there exists a cut (5’07k,§,;€) of weight 5 - ﬁv where

Sex ={[z]ildg,,(x,c) —2i < k,x € By,,i € [m]}
U{[zlildg,, (z,c) —2i — 1 < k,x € Ry, i € [m]} U{¢t,t'}.



Let G be the graph obtained by subdividing each edge of I,,, into 7m? edges. The metric (G, leng)

N

contains an isometric copy of (1,,,,len; ). We define 7, to be the restriction of &£,,,37m,, to vertices
of fm

Furthermore, we define g, : I, — L; the map corresponding to 7, + tver and G, : I, — L1 as
the map corresponding to 7, + fiver- Letting g,, : V(G) — Ly be defined by g, = Enfmm- Let 7 be
a shortest path between s and ¢, all the cuts in 7,;, and fiver cut every shortest path between s and
t exactly once, hence

Y 1gm (@) = gm (@)l < Gim(s) = Gm(®)]]-

uvey

The next lemma bounds the distortion for §,,. Its proof has been included in the Appendix (Section
A2).

Lemma 4.3 The map G, is non-expanding and has distortion O(y/m).

All the edges between two consecutive layers in the image of §,, have exactly the same length,
and the mapping is non-expanding. We construct g/, from g, by adding the cuts of the form
S ={v:veV(y),lens, (s,v) < (k+ 1)} with appropriate weights to make the length of each
edge e € E(I,,) in the image of ¢’ exactly len ;. (€). The map gy, is non-expanding and for any
two vertices in I,, their distance has increased compared to g, therefore distortion of §’ is at most

O(v/m).

4.2 Embedding Composition

In this section we first present a composition of embeddings which is equivalent to the composi-
tion that was defined in [13]. This composition is used to construct an embedding for G®* from
embedding of the graph GG. We show that this composition preserves strong triangle inequalities.
Projection. For a point x € R™, and a subspace s € R", proj,(z) is the orthogonal projection of
x onto s. Abusing the notation, for a line segment (y, z) € R™, we define

(w—y)~(2—y)(

Iz = ylI3

Proj(y,.) () =y + z—y).

The point proj, ) (x) is the orthogonal projection of x on the line that passes through y and z.

Composition of s-t maps. Two-sum of maps. For two graphs G = (V, E) and H = (W, F),
the 2-sum of G and H is constructed by first taking the disjoint union of V(G) and V(H), and
then choosing edges €1 € Eandé € F , identifying them, together with their endpoints. Let I be
the 2-sum of G and H over €} = (uj,v1) and é = (ug,v2). Furthermore, suppose fg : V(G) — R"
and fg : V(H) — R™ and | fa(€1)]l2 = || fu(€2)|l2. We define two sum of maps fg and fg,
f:V({I) = RxR"xR™ as follows,

(0,0,0) if x =uy
(I fe(1)]12,0,0) if © = v
fa) = Halwn) = prois, (fa(@)llz, fo(z) = proj,, (fo(x)), 0)
if x € V(G)\{u1,v1}, where s1 = (fa(u1), fa(vr)),
(£ (ug) = projs, (fu ()2, 0, fu () — proj, (fu(x)))
if x € V(H)\{ua,va}, where so = (fr(u2), frr(v2)).

10



@-embedding. Let G and H be two s-t graphs, equipped with maps fg : V(G) — Lo and
fu : V(H) — Ly. We construct fgom : V(G @ H) — L by applying the 2-sum composition on
scaled copies of fp for all edges in Ep(G).

: fon : : I(fe )= fe(ull2 : :
This construction is obtained by scaling (by the factor =T ()]s ), changing the basis for map

fm to a disjoint basis except for fr(s) and fr(t), and then translating it to attach on edge (u;, v;).

Observation 4.4 Let x,y € G © H be on two distinct copies of H on edges (uy,vy) and (uy,vy).
Furthermore let s = (faon(Uz), faor (vz)) and sy = (faou (uy), faor(vy)), then

| feon(x) = foorn )3 = llprojs, (faomr () — proiy, (faou(x))|l3
+|foon(x) = projy, (foor (@))5 + | faomr (y) — projs, (faomn (v))]3.

Lemma 4.5 [13] Let G, H and I be three marked s-t graphs. Let x,y € G @ H @ I, and let
fa : G — Lo, fu : H — Lo and f; : I — Lo be the maps from these graphs to Lo, then
fcomor ~ fao(orn up to translation and change of basis.

We prove that the @-composition preserves triangle inequalities. We defer the proof of the theorem
to the Appendix (Section A.3).

Theorem 4.6 Let G and H be two graphs and suppose that f is the two-sum of the maps g : G —
NEG and h : H — NEG on the edges €1 = (uj,v1) and € = (ug,v2), then image of f is also a
negative type metric.

By using the @-composition we can construct an embedding for G based on f: V(G) — L. The

map afm ® (1 — a)gl, is O(a)-efficient, and has distortion min(1/«, /m). Every L; metric is also

a NEG metric. We construct the map fy, 1 : I9% — NEG using @-embedding of this map, with
1

Using Theorem 4.6, it follows that the resulting embedding is in NEG.

Distortion Bound We defer the analysis of the distortion of the embedding constructed above
to the Appendix (Section A.4).
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A Proofs

A.1 Lower bound for NEG embedding

Lemma A.1 (Lemma 3.4 in [13]) Fori,j € [m] and a non-expanding embedding f : V(H,,) —
NEG with distortion at most D,

(f(z]e) — f(zlo), f([=];) — F(];)) = % —4fi —jl.
Proof: We have,

(f([)i) = f([=a), f (=) = £([7]5)) = %(Hf([x]i) = FUEI)IP + £ ([=]) = f(2])IP
=[1£(2]a) = f([@]s) = (f([2;) = F(@))I1)

> 5 (5 + 5 = 1Al — £02h) - (F(laly) - F)IP)
= B = S ale) = 7laly) + () — F(I?

> 5 = 1) = £ = 17l — £ ()

> - dfi— jl.

where the first inequality follows because f has distortion D and the last one follows because f is
non-expanding. [ |

An immediate corollary of the above lemma is Lemma 3.1, which has been restated below.

Lemma A.2 ([13], Lemma 3.1 restated) For any non-expanding map f : V(H,,) — NEG with
distortion at most D and i,j € [m] such that |i — j| < B,

(k) = £, £(ils) ~ F(730) 2 55

Lemma A.3 (Lemma 3.2 restated) For any e-efficient non-expanding map f : V(H,,) — NEG,
and for any | < %, there exists an index p € [m] such that:

E (F(ea), £([e))) =0 (I +¢) .

eeE(Qm)we[ppH 1]

Proof: Fix x € Q,, and k € [m]. Consider a path [z];, [z @ ex]i, [z]it1,-- -, [z];, and let € =
(xr,z®er), f([€li) = f([z®erli) — f([x];). We have the following,

1F([2]0) = F(=IDIP = If([2)e) = f(lz @ exl)II* + [1f [z ® exls) — f([2])]
+2(f([z]s) = f(lz @ er)a), f([z @ ex]s) — f([2];))

< Nf(le) = flz @ ed) I + 11 (2 ® exls) = f([];)II?

—2(f([z @ exls) = f([li), f([z @ ex];) — f([2]5))
< ) = f @ ed) 1P + 1f (2 @ exls) = f(laliva) |

+HIf (@livr) = FUI)I? = 2(F (), f([E) -

13



where both the inequalities follow from triangle inequality. For a fixed j, we obtain the following
inequality by induction,

1 (2]p) = F(21)I < Z 1 ([2]) = f([z @ exlo)|I” + 1 ([z ® exls) — f([2liva)]?
- < ([e]a), £((e15))) -

A similar calculation yields the following inequality,

pHi—1

£ ([ @ erly) = F([w @ erlpri-D)I> < Y (1f (@ @ erlioa) — f([2])]

i=j+1
HIf (=) = Flz @ el — 2 (f£([e), f£([€]5)))-

Using both inequalities, we get

1 (2]p) = F(lz @ enlpri-0)I* < If([]p) = F(IDIP + 1F([2]y) = f [z ex]y)II?
HIf([z @ exly) — [z @ exlpri-1)]

p+i—1 p+1—2
Z 17 ([2]) — f([z @ ex]a)|” + Z 1 [z @ exls) — F([a]is )]
pH+i—1 N
-2 ) (f fe)))- 3)
i=p,iF]

We partition the vertices of H,, into {%1 blocks, each of which consists of at most [ consecutive

hypercubes. Thus the starting indices for these blocks would be P = {1,1+ 1,21+ 1,...,1 [%] —

2] + 1}. Note that we ignore the last block which may contain fewer than [ hypercubes. For the
sake of brevity, let r =1 [%] -2l + 1.

Now, for an s-t shortest path from fi,,, we consider the expression || f(s) — f(¢)||?> and use triangle
inequality to obtain a sum over terms || f([z],) — f([z @ ex]pri—1)|*

1F(s) = F@OIP < 1) = FIDI? + D 1 (2lp) — f(lz @ exlprii)]?

peEP

+ D 1 @ erlprimr) = F(alprd) I+ 1 ([ @ exlrr) — FOI.

peP

We use the Inequality (3) to bound > p [|f([z]p) — f([z ® eklp+1-1)||?- By averaging over all such
shortest paths from pu,,, and using the e-efficiency condition, we obtain the following inequality,

E fs)=fOIF < (1+2) B |If(s) = FOIP

Y~ Hm
pHi—1
-2 E > (@), F(@prs)) -
pep ECEQm) iy iy
Since the embedding is non-expanding, this implies,

p+i—1

S E Y (@) f(@ps) < em.

peP FEEQm) ipip

14



Thus, for [ < 7, there exists a p € P such that

p+i—1
i) )<< 2el.
e*eﬁ(c)m)ip%;pﬂ (f([e), f([€]p+5)) < o1 s £

The embedding is non-expanding, therefore (f[é];, f[€];) < 1. Adding the terms for i = j, we obtain

I E (f(le), f([e))) < 207" + 2.

EEE(Qm) HIiEpp+I-1]

A.2 Embedding the base graph

Lemma A.4 (Lemma 4.1) Suppose that G is graph. For any non-expanding map f : V(G) —

L1, we have
dist(& f) < 5 - dist(f).

Proof: We first verify that & f is non-expanding. If v and v € P, 4 of G, then

€7 (@) = £l = 1) = F)h G > dis( £l o),

where P, . is the path on the edge (z,y). Now, we consider the case that u and v are on different
edges of G. Let u/ and v’ be the closest vertices of G to u and v, respectively. We have,

1 1
€S () = Ef W)l 25 (1€ (W) = Ef(W)Ih = 1€ f () = Ef (W)
—[1€sf(v) = Esf(W)]I1) -
On the other hand,

20/Euf (u) = EF (V)1 Z|1Ef(u) — Euf W)y + 1€ f (v) — Ef (V) ]]a
>dist(f) (d(/,u) + d(v,v"))

hence,
217 ) — F@)lh 25 (EF W)~ E W)+ IEaf () — E7 ()]

+ & f(v) = Esf(W)Ih)

dist2(f) (dg(u,u’) Fde (W) + dG(U/’U)) >

dist(f)
2

> de(u,v).

Lemma A.5 (Lemma 4.3 restated,[13]) The map g, is non-expanding and has distortion O(y/m).
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Proof: We first bound the distortion of g,,, and then use Lemma 4.1 to bound dist(gy,).

To show that g,, is non-expanding, it is enough to show that the map is non-expanding on all of
the edges. For any given edge (u,v) € E(I,), we have d,,,, (u,v) < 3leny, (u,v). For all the vertices
v in the first layer Prgey,, [1s(v) # 15(s)] < %, hence

1 m m
Qi (5,0) + i (5,0) = 3 (5) + 5 < m.

The same analysis would give the same bound for the distance between the last layer and ¢. For
edges between s and s’, and between ¢t and ¢’ we have

1

dﬂm (t/’ t) + dﬂver (t/7 t) = d"]m (8/7 8) + dltver(sl7 S) = W

For all other edges let u be at layer ¢ and v be at layer i+1. Any set S, that contain u also contains
v. The only cuts that can separate u from v in n,, are the cuts such that i—k < dg,, (v,c) <i—k+1.
The total weight of these cuts is at most 52 (%) < 1, therefore

N | =

+

N =

dnm ('U,, U) + dﬂver ('LL, 1)) S

Now, we have to bound the contraction of pairs. We can lower bound the distance between any
vertex ¢ € I, and s by d’”%(m’s), using only fiyer. Similarly we can bound the distance from ', #/,
and ¢ to other vertices. For all other vertices [x]; and [y];. Without loss of generality assume that

x is in layer 4" and y is in layer j', where ¢/ < 5. We have

dm ()i, [yl;) < 2-max(li = jl, dg,, (2, y))
< 2- (i - jl +dg,,(2.9))
< (1 (i ) + day, (2. 1)

Now, we only need to bound dg,, (z,y) by dy,, ([x]i, [y];) to bound the total distortion.

m 1
(i) > DR
Sc,k:Ean[y}jESc,kv[x]i¢Sc,k

1
> 2. X i
Cc€EQm dg,, (c,x)—i' >k,
dQm (cy)—i' <k
1
> d —dg,. d —
— Z ma’X(O7 Qm (C, y) Qm (07 x)) 4 . 2m

CGQm

- 5 CeQm 4

= o(vm)
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A.3 Embedding Composition

Theorem A.6 (Theorem 4.6 restated) Let G and H be two graphs and suppose that f is the
two-sum of the maps g : G — NEG and h : H — NEG on the edges €1 = (u1,v1) and €3 = (ug, v2),
then image of f is also a megative type metric.

Before we prove this lemma we prove the following simple geometric lemma,

Lemma A.7 Let o, 71, y, and z be four points in R™ such that ||[xo—y|3+||ro— 2|3 —|ly—=2[|3 > 0
and ||z1 — y||3 + |21 — 2|13 — |ly — 2[13 > 0. We define x4 as a(x1) + (1 — a)zg. For 0 < a <1, we
have:

(za = y)(za —2) +a(l —a)(zo — 21)* 2 0.

Proof: Let f(a) = (x4 —y)(7a — 2) + (1l — a)(zg — x1)%. We have that f(0) and f(1) are both
non-negative. To prove this Lemma we show that f is a linear function and it assumes its minimum
on one of the end points.

fla) = (za—y,a—2) +a(l —a)|zo — 213
= (20 + a(e1 — 0) — y, 20 + a1 — x9) — 2) + a1 — @) [lzo — 213
= O+ 2a(zg,x1 — z0) + [la(zr — 20)|3 — (y + 2, a(z1 — x9))
+a(l —a)|zo — 13
= C+2a{xg,x1 —z0) — (y + 2, (w1 — 10)) + f|wo — 1|3
Note that, in the above equation C' is the constant part of the function that does not depend on
. |
|
|

Proof: [Proof of Theorem A.6] We have to show that for all possible values of z, y and z in domain
of f the inequality
1f (@) = FE+ 11 (2) = FW)IIE > 1 f(z) = f(2)I13

holds. Instead of proving this inequality, we prove the following equivalent inequality,

(f(x) = f(y), f(2) = f(y)) = 0.

Without loss of generality assume that y € V(G). If both z,y € V(G), then since the two-sum
operation does not change the distances between pairs in V(G) the inequality holds. If one of
x € V(G) and z € V(H) we have,

(f(x) = f(y), f(2) = fly)) = <f(:v) = £(Y), Proj( f(us), f(wa)) (f(2)) — f(y)> :

We can write proj(r(y,), r(us)) (f(2)) as af(uz) + (1 — a) f(ve) for some « € [0, 1]. Therefore,

(f(@) = f), f(z) = fly) = (f(x) = f(y),af(uz) + (1 —a)f(v2))
= (f(x) = f() (af(ur) + (1 —a)f(v1) — f(v))
= (f(z) = f(y),af(u1) + (1 —a)f(v1) = f(y))
y), f(u1) — f(y))
) (f() = f), flv1) = f(y))

~—

=
|
5 =
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Finally, we consider the case where z,z € V/(H). Let ¥’ = proj (), f(u1)) (%),
(f@) = f), f(2) = fy) = (fl@)=(fw)—y) =y, () = (Fy) =) =)
= (f(@) =y f(2) =)+ W) = ¥II5,
where the second equality holds because
) =y f(2)—y) =(fly) — v fl@) —y/) = 0.

By Lemma A.7
(f@) =y, f(2) =) = (flw) =y, f(v1) —¢) -
On the other hand, the inequality (f(v1) — f(y), f(u1) — f(y)) > 0 holds, thus

I(f () = )3 > (f(ur) =o',y — flo1)).

Hence,

(f(x) = f), f(z) = fw) = (fl@&)—v, fz)—y)+fw)—¥I3
(fr) =9, flur) = o) + If () = ¥|I3
0.

AV,

A.4 Distortion Bound

Theorem A.8 (Theorem 2.10 restated) There exists a map f : I9F — NEG, such that dist(f) <

min(k, v/m).

As a corollary of this theorem is that for every k, there exists an embedding of f,%k into negative
type metrics with distortion at most O(logl/ ®n), where n is the number of vertices in the graph.

Before we prove Theorem A.8, we need to prove Lemma A.9. Using this lemma we only need to go
back to the common ancestor of two vertices in the analysis, we can bound the expansion of the
map.

Lemma A.9 For any edge € € Ep(I2F), we have len; (e) =< | frn e (€)]]3-

After finding the common ancestor we divide a path in f,%k into three parts. The two parts that
are not part of the common ancestor are bounded using Lemma A.10. The other part is completely
inside the common ancestor. We bound this part by distortion bound on a single copy of fm and
the bounds obtained for the other two parts.

Lemma A.10 Let x,y,z € R™ such that square of their distances satisfy triangle inequality. then,

min(||z — 2|3, [ly — 2II3) < ||z — proj(, ) (2)II5.
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] proj,. (fmk(z)) “\‘ prO_ij(fm,k(y))
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fm,k(vm)‘ “
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Figure 1: We bound || fm k() — projs, (fmx(®))ll2; [lpros, (fm k() = fmk(@)ll2, and || fmr(z) -
fmx(y)l2 separately.

Proof: [Proof of Theorem A.§]

First, we prove this Theorem for the case that one of the vertices is s. Let u, be the closest vertex
to z in G. We have,

i (2, 8) =X dyn (U, 8) Z min(k, V/m)|| fon o (uz) = frnr ()13

= min(k, V)| f () — Frnie(5) 3 (4)
Now, we bound the contraction of f,, ;. For vertices x,y € f,%k , Lemma A.9 shows that the com-
mon ancestor of x and y has a constant distortion. Let I,, be the common ancestor, and let = be

on the edge (ug,v,) and y on the edge (uy,vy). Suppose that len;or(uy,y) < lenjor(vy,y), and

Ienﬁ%k (ug, ) < Ienfr%k (vg, x). Furthermore, let s, = (fr 1 (uz), fm,k(vﬁ), and s, = (fnzlk(uy), Tk (vy)).
We bound the distance between f,, () and f,, x(y) by dividing it to three parts, and bound each
part separately (see Figure 1).

e (@) = Fne I3 = | finie(2) — projg, (fms(2))ll3
+ | fimke () = projs, (fmiW))3 +

[proj, (fmk(y)) = projs, (fmk(2))II3
2 max(|| fon, () — prois, (fmnk(@)I3 + |k (y) = projs, (famr@))3
|

lIprojs, (Fma(y)) = projs, (fin())II3)-

We can bound ||proj,, (fm.k(y)) — projs, ( fmk(2))]13 using the following inequality,
||projsy(fm,k(y)) - projsz (fm,k(@)”% > ||fm,k(uy) - fm,k(um)H%
~llprojs, (fmu () = Frns(uy) 13 — llprojs, (fn () = frnn(ua) 3.
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We can bound the total length using Lemma A.10, and Inequality (4),

min (k, Vi) - [ frn(2) = Frn I3 2 max (don (12, @) + i (10, ),

dm,k(uya u;r) - O(dm,k(u$7 :L') + dm,k(u% y)))
Z dm,k(”xv LU) + dm,k(uy7 y) + dm,k(ugp U:c)

Now we present the proof for Lemma A.9.

Proof: [Proof of Lemma A.9] Let f = af, ® (1 — a)g.,, for all edges in (u,v) € E(I,), the
following inequality holds,

DO _ (4 o(ty) LO=L0s
Therefore, we can bound expansion of each edge by
1 \*
(1 + O<k)> = 1.
|
|

Proof: [Proof of Lemma A.10] Without loss of generality assume that ||z — 2||3 < |ly — z||3. Since
square of distances among x,y, z satisfy triangle inequality,

o = 2013 = 12 = Proj ) (2)I13 + 1 = Proj(s ()3
< 12 = Proj(ey) (2)13 = (= = Projay)(2),y = Projiuy) (=) )
< 2”'%' - proj(m,y)(z)H%'
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