
Foundations and Trends R© in
Theoretical Computer Science
Vol. 9, No. 2 (2013) 125–210
c© 2014 S. Sachdeva and N. K. Vishnoi

DOI: 10.1561/0400000065

Faster Algorithms via Approximation Theory

Sushant Sachdeva
Yale University

sushant.sachdeva@yale.edu

Nisheeth K. Vishnoi
Microsoft Research

nisheeth.vishnoi@gmail.com

Contents

Introduction 126

I APPROXIMATION THEORY 135

1 Uniform Approximations 136

2 Chebyshev Polynomials 140

3 Approximating Monomials 145

4 Approximating the Exponential 149

5 Lower Bounds for Polynomial Approximations 153

6 Approximating the Exponential using Rational Functions 158

7 Approximating the Exponential using Rational Functions
with Negative Poles 163

ii

iii

II APPLICATIONS 171

8 Simulating Random Walks 174

9 Solving Equations via the Conjugate Gradient Method 179

10 Computing Eigenvalues via the Lanczos Method 185

11 Computing the Matrix Exponential 191

12 Matrix Inversion via Exponentiation 196

References 205

Abstract

This monograph presents ideas and techniques from approximation theory for
approximating functions such as xs, x−1 and e−x, and demonstrates how these
results play a crucial role in the design of fast algorithms for problems which
are increasingly relevant. The key lies in the fact that such results imply faster
ways to compute primitives such as Asv, A−1v, exp(−A)v, eigenvalues, and
eigenvectors, which are fundamental to many spectral algorithms. Indeed,
many fast algorithms reduce to the computation of such primitives, which
have proved useful for speeding up several fundamental computations such
as random walk simulation, graph partitioning, and solving systems of linear
equations.

S. Sachdeva and N. K. Vishnoi. Faster Algorithms via Approximation Theory. Foundations
and Trends R© in Theoretical Computer Science, vol. 9, no. 2, pp. 125–210, 2013.

DOI: 10.1561/0400000065.

Introduction

A Brief History of Approximation Theory

The area of approximation theory is concerned with the study of how well
functions can be approximated by simpler ones. While there are several no-
tions of well and simpler, arguably, the most natural notion is that of uniform
approximations by polynomials: Given a function f : R 7→ R and an interval
I, what is the closest a degree d polynomial can remain to f (x) throughout
the entire interval? Formally, if Σd is the class of all univariate real polyno-
mials of degree at most d, the goal is to understand

ε f ,I(d)
def
= inf

p∈Σd
sup
x∈I
| f (x)− p(x)|.

This notion of approximation, called uniform approximation or Chebyshev
approximation, is attributed to Pafnuty Chebyshev, who initiated this area in
an attempt to improve upon the parallel motion invented by James Watt for
his steam engine; see [13]. Chebyshev discovered the alternation property
of the best approximating polynomial and found the best degree-d−1 poly-
nomial approximating the monomial xd ; see [14]. Importantly, the study of
this question led to the discovery of, what are now referred to as, Chebyshev
polynomials (of the first kind). Chebyshev polynomials find applications in
several different areas of science and mathematics and, indeed, repeatedly
make an appearance in this monograph due to their extremal properties.1

1The Chebyshev polynomial of degree-d is the polynomial that arises when one writes
cos(dθ) as a polynomial in cosθ .

126

Introduction 127

Despite Chebyshev’s seminal results in approximation theory, including
his work on best rational approximations, several foundational problems re-
mained open. While it is obvious that ε f ,I(d) cannot increase as we increase
d, it was Weierstrass [67] who later established that, for any continuous func-
tion f and a bounded interval I, the error ε f ,I(d) tends to 0 as d goes to
infinity. Further, it was Emile Borel [11] who proved that the best approxima-
tion is always achieved and is unique. Among other notable initial results in
approximation theory, A. A. Markov [38], motivated by a question in chem-
istry posed by Mendeleev, proved that the absolute value of the derivative of
a degree d polynomial that is bounded in absolute value by 1 in the interval
[−1,1] cannot exceed d2. These among other results not only solved impor-
tant problems motivated by science and engineering, but also significantly
impacted theoretical areas such as mathematical analysis in the early 1900s.

With computers coming into the foray around the mid 1900s, there was a
fresh flurry of activity in the area of approximation theory. The primary goal
was to develop efficient ways to calculate mathematical functions arising in
scientific computation and numerical analysis. For instance, to evaluate ex for
x ∈ [−1,1], it is sufficient to store the coefficients of its best polynomial (or
rational) approximation in this interval. For a fixed error, such approximations
often provided a significantly more succinct representation of the function
than the representation obtained by truncating the appropriate Taylor series.

Amongst this activity, an important development occurred in the 1960s
when Donald Newman [43] showed that the best degree-d rational approx-
imation to the function |x| on [−1,1] achieves an approximation error of
e−Θ(

√
d), while the best degree-d polynomial approximation can only achieve

an error of Θ(1/d). Though rational functions were also considered earlier, in-
cluding by Chebyshev himself, it was Newman’s result that revived the area
of uniform approximation with rational functions and led to several rational
approximation results where the degree-error trade-off was exponentially bet-
ter than that achievable by polynomial approximations. Perhaps the problem
that received the most attention, due to its implications to numerical methods
for solving systems of partial differential equations (see [19]), was to under-
stand the best rational approximation to e−x over the interval [0,∞). Rational
functions of degree d were shown to approximate e−x on [0,∞) up to an error
of cd for some constant c < 1. This line of research culminated in a land-

128 Introduction

mark result in this area by Gonchar and Rakhmanov [20] who determined the
optimal c. Despite remarkable progress in the theory of approximation by ra-
tional functions, there seems to be no clear understanding as to why rational
approximations are often significantly better than polynomial approximations
of the same degree, and surprising results abound. Perhaps this is what makes
the study of rational approximations promising and worth understanding.

Approximation Theory in Algorithms and Complexity

Two of the first applications of approximation theory in algorithms2 were the
Conjugate Gradient method (see [24, 31]) and the Lanczos method (see [36]),
which are used to solve systems of linear equations Ax = v where A is an
n×n real, symmetric, and positive semi-definite (PSD) matrix. These results,
which surfaced in the 1950s, resulted in what are called Krylov subspace
methods and can also be used to speed up eigenvalue and eigenvector compu-
tations. These methods are iterative and reduce such computations to a small
number of computations of the form Au for different vectors u. Thus, they are
particularly suited for sparse matrices that are too large to handled by Gaus-
sian elimination-based methods; see the survey [58] for a detailed discussion.

Until recently, the main applications of approximation theory in theo-
retical computer science have been in complexity theory. One of the most
notable was by Beigel et al. [8] who used Newman’s result to show that the
complexity class PP is closed under intersections and unions.3 Another im-
portant result where approximation theory, in particular Chebyshev polyno-
mials, played a role is the quadratic speed-up for quantum search algorithms,
initiated by a work by Grover [22]. The fact that one cannot speed up beyond
Grover’s result was shown by Beals et al. [7] which, in turn, relied on the use
of Markov’s theorem as inspired by Nisan and Szegedy’s lower bound for the
Boolean OR function [46]. For more on applications of approximation theory
to complexity theory, communication complexity and computational learning
theory, we refer the reader to [1, 33, 61, 65], and for applications to streaming
algorithms to [23].

2More precisely, in the area of numerical linear algebra.
3PP is the complexity class that contains sets that are accepted by a polynomial-time

bounded probabilistic Turing machine which accepts with probability strictly more than 1/2.

Introduction 129

Faster Algorithms via Approximation Theory

The goal of this monograph is to illustrate how classical and modern tech-
niques from approximation theory play a crucial role in obtaining results that
are relevant to the emerging theory of fast algorithms. For example, we show
how to compute good approximations to matrix-vector products such as Asv,
A−1v and exp(−A)v for any matrix A and a vector v.4 We also show how to
speed up algorithms that compute the top few eigenvalues and eigenvectors
of a symmetric matrix A. Such primitives are useful for performing several
fundamental computations quickly, such as random walk simulation, graph
partitioning, and solving linear system of equations. The algorithms for com-
puting these primitives perform calculations of the form Bu where B is a
matrix closely related to A (often A itself) and u is some vector. A key feature
of these algorithms is that if the matrix-vector product for A can be computed
quickly, e.g., when A is sparse, then Bu can also be computed in essentially
the same time. This makes such algorithms particularly relevant for handling
the problem of big data. Such matrices capture either numerical data or large
graphs, and it is inconceivable to be able to compute much more than a few
matrix-vector product on matrices of this size.

Roughly half of this monograph is devoted to the ideas and results from
approximation theory that we think are central, elegant, and may have wider
applicability in TCS. These include not only techniques relating to polyno-
mial approximations but also those relating to approximations by rational
functions and beyond. The remaining half illustrates a variety of ways we
can use these results to design fast algorithms.

As a simple but important application, we show how to speed up the com-
putation of Asv where A is a symmetric matrix with eigenvalues in [−1,1], v
is a vector and s is a large positive integer. The straightforward way to com-
pute Asv takes time O(ms) where m is the number of non-zero entries in A,
i.e., A’s sparsity. We show how, appealing to a result from approximation
theory, we can bring this running time down to essentially O(m

√
s). We start

with a result on polynomial approximation for xs over the interval [−1,1].
Using some of the earliest results proved by Chebyshev, it can be shown that

4Recall that the matrix exponential is defined to be exp(−A) def
= ∑k≥0

(−1)kAk

k! .

130 Introduction

there is a polynomial p of degree d ≈
√

s log 1/δ that δ -approximates xs over
[−1,1]. Suppose p(x) is ∑

d
i=0 aixi, then the candidate approximation to Asv

is ∑
d
i=0 aiAiv. The facts that all the eigenvalues of A lie in [−1,1], and that

p is close to xs in the entire interval [−1,1] imply that ∑
d
i=0 aiAiv is close

to Asv. Moreover, the time taken to compute ∑
d
i=0 aiAiv is easily seen to be

O(md) = O(m
√

s log 1/δ), which gives us a saving of about
√

s.

When A is the random walk matrix of a graph and v is an initial distri-
bution over the vertices, the result above implies that we can speed up the
computation of the distribution after s steps by a quadratic factor. Note that
this application also motivates why uniform approximation is the right no-
tion for algorithmic applications, since all we know is the interval in which
eigenvalues of A lie while v can be any vector and, hence, we would like the
approximating polynomial to be close everywhere in that interval.

While the computation of exp(−A)v is of fundamental interest in sev-
eral areas of mathematics, physics, and engineering, our interest stems from
its recent applications in algorithms and optimization. Roughly, these latter
applications are manifestations of the multiplicative weights method for de-
signing fast algorithms, and its extension to solving semi-definite programs
via the framework by Arora and Kale [6].5 At the heart of all algorithms
based on the matrix multiplicative weights update method is a procedure to
quickly compute exp(−A)v for a symmetric, positive semi-definite matrix A
and a vector v. Since exact computation of the matrix exponential is expen-
sive, we seek an approximation. It suffices to approximate the function e−x

on a certain interval. A simple approach is to truncate the Taylor series ex-
pansion of e−x. However, we can use a polynomial approximation result for
e−x to produce an algorithm that saves a quadratic factor (a saving similar to
the application above). In fact, when A has more structure, we can go beyond
the square-root.

For fast graph algorithms, often the quantity of interest is exp(−tL)v,
where L is the normalized Laplacian of a graph, t ≥ 0 and v is a vector. The
vector exp(−tL)v can also be interpreted as the resulting distribution of a t-
length continuous-time random walk on the graph with starting distribution
v. Appealing to a rational approximation to e−x with some additional prop-

5See also [26, 27, 28, 29, 50, 51, 48, 66, 5].

Introduction 131

erties, the computation of exp(−tL)v can be reduced to a small number of
computations of the form L−1u. Thus, using the near-linear-time Laplacian
solver6 due to Spielman and Teng [62], this gives an Õ(m)-time algorithm
for approximating exp(−tL)v for graphs with m edges. In the language of
random walks, continuous-time random walks on an undirected graph can
be simulated essentially independent of time; such is the power of rational
approximations.

A natural question which arises from our last application is whether the
Spielman-Teng result (which allows us to perform computations of the form
L−1u) is necessary in order to compute exp(−L)v in near-linear time. In
our final application of approximation theory, we answer this question in the
affirmative: We show that the inverse of a positive-definite matrix can be ap-
proximated by a weighted-sum of a small number of matrix exponentials.
Roughly, we show that for a PSD matrix A, A−1 ≈ ∑

k
i=1 wi exp(−tiA) for a

small k. Thus, if there happens to be an algorithm that performs computations
of the form exp(−tiA)v in time T (independent of ti), then we can compute
A−1v in essentially O(T k) time. Thus, we show that the disparate looking
problems of inversion and exponentiation are really the same from a point of
view of designing fast algorithms.

Organization

We first present the ideas and results from approximation theory and subse-
quently we present applications to the design of fast algorithms. While we
have tried to keep the presentation self-contained, for the sake of clarity, we
have sometimes sacrificed tedious details. This means that, on rare occasions,
we do not present complete proofs or do not present theorems with optimal
parameters.

In Section 1, we present some essential notations and results from ap-
proximation theory. We introduce Chebyshev polynomials in Section 2, and
prove certain extremal properties of these polynomials which are used in this
monograph. In Sections 3 and 4 we construct polynomial approximations to

6A Laplacian solver is an algorithm that (approximately) solves a given system of linear
equations Lx = v, where L is a (normalized) graph Laplacian and v ∈ Im(L), i.e., it (approxi-
mately) computes L−1v; see [66].

132 Introduction

the monomial xs over the interval [−1,1] and e−x over the interval [0,b] re-
spectively. Both results are based on Chebyshev polynomials. In Section 5
we prove a special case of Markov’s theorem which is then used to show that
these polynomial approximations are asymptotically optimal.

Sections 6–7 are devoted to introducing techniques for understanding ra-
tional approximations for the function e−x over the interval [0,∞). In Section
6, we first show that degree d rational functions can achieve cd error for some
0 < c < 1. Subsequently we prove that this result is optimal up to the choice
of constant c. In Section 7 we present a proof of the theorem that such geo-
metrically decaying errors for the e−x can be achieved by rational functions
with an additional restriction that all its poles be real and negative. We also
show how to bound and compute the coefficients involved in this rational
approximation result; this is crucial for the application presented in Section
11.

Sections 8–11 contain the presentation of applications of the approxima-
tion theory results. In Section 8 we show how the results of Section 3 imply
that we can quadratically speed up random walks in graphs. Here, we dis-
cuss the important issue of computing the coefficients of the polynomials in
Section 3. In Section 9 we present the famous Conjugate Gradient method
for iteratively solving symmetric PSD systems Ax = v, where the number
of iterations depends on the square-root of the condition number of A. The
square-root saving is shown to be due to the scalar approximation result for xs

from Section 2. In Section 10 we present the Lanczos method and show how
it can be used to approximate the largest eigenvalue of a symmetric matrix.
We show how the existence of a good approximation for xs, yet again, allows
a quadratic speedup over the power method.

In Section 11 we show how the polynomial and rational approximations
to e−x developed in Sections 6 and 7 imply the best known algorithms for
computing exp(−A)v. If A is a symmetric and diagonally dominant (SDD)
matrix, then we show how to combine rational approximations to e−x with
negative poles with the powerful SDD (Laplacian) solvers of Spielman-Teng
to obtain near-linear time algorithms for computing exp(−A)v.

Finally, in 12, we show how x−1 can be approximated by a sparse sum
of the form ∑i wie−tix over the interval (0,1]. The proof relies on the Euler-

Introduction 133

Maclaurin formula and certain bounds derived from the Riemann zeta func-
tion. Using this result, we show how to reduce computation of A−1v for a sym-
metric positive-definite (PD) matrix A to the computation of a small number
of computations of the form exp(−tA)v. Apart from suggesting a new ap-
proach to solving a PD system, this result shows that computing exp(−A)v
inherently requires the ability to solve a system of equations involving A.

Acknowledgments

We would like to thank Elisa Celis with whom we developed the results pre-
sented in Sections 3 and 8. We thank Oded Regev for useful discussions re-
garding rational approximations to e−x. Finally, many thanks to the anony-
mous reviewer(s) for several insightful comments which have improved the
presentation of this monograph.

Part of this work was done when SS was at the Simons Institute for the
Theory of Computing, UC Berkeley, and at the Dept. of Computer Science,
Princeton University.

Sushant Sachdeva and Nisheeth K. Vishnoi
11 March 2014

134

Part I

APPROXIMATION
THEORY

1
Uniform Approximations

In this section we introduce the notion of uniform approximations for functions.
Subsequently, we prove Chebyshev’s alternation theorem which characterizes the
best uniform approximation.

Given an interval I ⊆ R and a function f : R 7→ R, we are interested in
approximations for f over I. The following notion of approximation will be
of particular interest:

Definition 1.1. For δ > 0, a function g is called a δ -approximation to a
function f over an interval I if supx∈I | f (x)−g(x)| ≤ δ .

Both finite and infinite intervals I are considered. Such approximations are
known as uniform approximations or Chebyshev approximations. We start by
studying uniform approximations using polynomials. The quantity of interest,
for a function f , is the best uniform error achievable over an interval I by a
polynomial of degree d, namely, ε f ,I(d) as defined in the introduction. The
first set of questions are:

1. Does limd→∞ ε f ,I(d) = 0?

136

137

2. Does there always exist a degree-d polynomial p that achieves ε f ,I(d)?

Interestingly, these questions were not addressed in Chebyshev’s seminal
work. Weierstrass [67] showed that, for a continuous function f on a bounded
interval [a,b], there exist arbitrarily good polynomial approximations, i.e.,
for every δ > 0, there exists a polynomial p that is a δ -approximation to
f on [a,b]; see [54] for a proof. The existence and uniqueness of a degree-
d polynomial that achieves the best approximation ε f ,I(d) was proved by
Borel [11].

The trade-off between the degree of the approximating polynomial and
the approximation error has been studied extensively, and is one of the main
themes in this monograph.

In an attempt to get a handle on best approximations, Chebyshev showed
that a polynomial p is the best degree-d approximation to f over an interval
[−1,1] if and only if the maximum error between f and p is achieved exactly
at d +2 points in [−1,1] with alternating signs, i.e, there are

−1≤ x0 < x1 · · ·< xd+1 ≤ 1

such that
f (xi)− p(xi) = (−1)i

ε

where ε
def
= supx∈[−1,1] | f (x)− p(x)|. We prove the following theorem, at-

tributed to de La Vallee-Poussin which, not only implies the sufficient side
of Chebyshev’s alternation theorem but often, suffices for applications.

Theorem 1.1. Suppose f is a function over [−1,1], p is a degree-d polyno-
mial, and δ > 0 is such that the error function ε

def
= f − p assumes alternately

positive and negative signs at d +2 increasing points

−1≤ x0 < · · ·< xd+1 ≤ 1,

and satisfies |ε(xi)| ≥ δ for all i. Then, for any degree-d polynomial q, we
have supx∈[−1,1] | f (x)−q(x)| ≥ δ .

Proof. Suppose, on the contrary, that there exists a degree-d polynomial q
such that supx∈[−1,1] | f (x)−q(x)|< δ . This implies that for all i, we have

ε(xi)−δ < q(xi)− p(xi)< ε(xi)+δ .

138 Uniform Approximations

Since |ε(xi)| ≥ δ , the polynomial q− p is non-zero at each of the xis, and
must have the same sign as ε. Thus, q− p assumes alternating signs at the
xis, and hence must have a zero between each pair of successive xis. This
implies that the non-zero degree-d polynomial q− p has at least d +1 zeros,
which is a contradiction.

The above theorem easily generalizes to any finite interval. In addition to the
conditions in the theorem, if we also have supx∈[−1,1] | f (x)− p(x)|= δ , then
p is the best degree-d approximation. This theorem can be used to prove one
of Chebyshev’s results: The best degree-(d− 1) polynomial approximation
to xd over the interval [−1,1] achieves an error of exactly 2−d+1 (as we shall
see in Theorem 2.1).

Notes

Unlike Chebyshev’s result on the best degree-(d−1) approximation to xd , it
is rare to find the best uniform approximation. We present a short discussion
on an approach which, often, gives good enough approximations. The idea
is to relax the problem of finding the best uniform approximation over an
interval I to that of finding the degree-d polynomial p that minimizes the `2-
error

∫
I(f (x)− p(x))2 dx. For concreteness, let us restrict our attention to the

case when the interval is [−1,1]. Algorithmically, we know how to solve the
`2 problem efficiently: It suffices to have an orthonormal basis of degree-d
polynomials p0(x), . . . , pd(x), i.e., polynomials that satisfy∫ 1

−1
pi(x)p j(x)dx =

0 if i 6= j

1 otherwise.

Such an orthonormal basis can be constructed by applying Gram-Schmidt
orthonormalization to the polynomials 1,x, . . . ,xd with respect to the uniform
measure on [−1,1] 1. Given such an orthonormal basis, the best degree-d
`2-approximation is given by

p(x) =
d

∑
i=0

f̂i pi(x), where f̂i =
∫ 1

−1
f (x)pi(x)dx.

1These orthogonal polynomials are given explicitly by
{√

(2d+1)/2 ·Ld(x)
}

, where Ld(x)
denotes the degree-d Legendre polynomials; see [63].

139

The question then is, if p(x) is the best `2-approximation to the function f (x),
how does it compare to the best uniform approximation to f (x)? While we
cannot say much in general for such an approximation, if we modify the
relaxation to minimize the `2-error with respect to the weight function w(x) def

=
1/
√

1−x2, i.e., minimize
∫ 1
−1(f (x)− p(x))2 dx√

1−x2 , then, when f is continuous,
the best degree-d `2-approximation with respect to w turns out be an O(logd)
approximation for the best uniform approximation. Formally, if we let p be
the degree-d polynomial that minimizes the `2-error with respect to w, and let
p? be the best degree-d uniform approximation, then

sup
x∈[−1,1]

| f (x)− p(x)| ≤ O(logd) · sup
x∈[−1,1]

| f (x)− p?(x)|;

see [54, Section 2.4] for a proof.

The orthogonal polynomials obtained by applying the Gram-Schmidt
process with the weight w defined above, turn out to be Chebyshev Polynomi-
als, which are central to approximation theory due to their important extremal
properties.

2
Chebyshev Polynomials

In this section we define the Chebyshev polynomials and study some of their impor-
tant properties that are used extensively in the next several sections.

There are several ways to define Chebyshev polynomials.1 For a non-
negative integer d, if Td(x) denotes the Chebyshev polynomial of degree d,
then they can be defined recursively as follows:

T0(x)
def
= 1,T1(x)

def
= x,

and for d ≥ 2,
Td(x)

def
= 2xTd−1(x)−Td−2(x). (2.1)

For convenience, we extend the definition of Chebyshev polynomials to neg-
ative integers by defining

Td(x)
def
= T|d|(x)

for d < 0. It is easy to verify that with this definition, the recurrence given by
(2.1) is satisfied for all integers d. Rearranging (2.1), we obtain the following:

1The polynomials introduced here are often referred to as the Chebyshev polynomials of
the first kind.

140

141

Proposition 2.1. The Chebyshev polynomials {Td}d∈Z satisfy the follow-
ing relation for all d ∈ Z,

xTd(x) =
Td+1(x)+Td−1(x)

2
.

An important property of Chebyshev polynomials, which is often used to de-
fine them, is given by the following proposition which asserts that the Cheby-
shev polynomial of degree d is exactly the polynomial that arises when one
writes cos(dθ) as a polynomial in cosθ .

Proposition 2.2. For any θ ∈ R, and any integer d, Td(cosθ) = cos(dθ).

This can be easily verified as follows. First, note that

T0(cos(θ)) = 1 = cos(0 ·θ) and T1(cos(θ)) = cos(θ) = cos(1 ·θ).

Moreover, by induction,

cos(dθ) = 2 · cosθ · cos((d−1)θ)− cos((d−2)θ)

= 2 · cosθ ·Td−1(cosθ)−Td−2(cosθ) = Td(cosθ),

and hence, the result follows. This proposition also immediately implies that
over the interval [−1,1], the value of any Chebyshev polynomials is bounded
by 1 in magnitude.

Proposition 2.3. For any integer d, and x ∈ [−1,1], we have |Td(x)| ≤ 1.

In fact, Proposition 2.2 implies that, over the interval [−1,1], the polynomial
Td(x) achieves its extremal magnitude at exactly d + 1 points x = cos(jπ/d),

for j = 0, . . . ,d, and the sign of Td(x) alternates at these points. (See Fig-
ure 2.1 for a graphical illustration of the first few Chebyshev polynomials.)
We can now prove Chebyshev’s result mentioned in the notes at the end of
the previous section.

Theorem 2.1. For every positive integer d, the best degree-(d− 1) poly-
nomial approximation to xd over [−1,1], achieves an approximation error of
2−d+1, i.e.,

inf
pd−1∈Σd−1

sup
x∈[−1,1]

|xd− pd−1(x)|= 2−d+1.

142 Chebyshev Polynomials

d=0

d=1

d=2

d=3

d=4

d=5

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 2.1: Graphs of Chebyshev polynomials Td(x) on [−1,1] where d is in {0,1, . . . ,5}.

Proof. Observe that the leading coefficient of Td(x) is 2d−1 and, hence,
qd−1(x)

def
= xd − 2−d+1Td(x) is a polynomial of degree (d− 1). The approx-

imation error is given by xd − qd−1(x) = 2−d+1Td(x), which is bounded in
magnitude on [−1,1] by 2−d+1, and achieves the value ±2−d+1 at d + 1
distinct points with alternating signs. The result now follows from Theo-
rem 1.1.

The fact that Td(x) takes alternating±1 values d+1 times in [−1,1], leads to
another important property of the Chebyshev polynomials:

Proposition 2.4. For any degree-d polynomial p(x) such that |p(x)| ≤ 1 for
all x ∈ [−1,1], and any y such that |y|> 1, we have |p(y)| ≤ |Td(y)|.

Proof. Assume, on the contrary, that there is a y satisfying |y| > 1 such that
|p(y)|> |Td(y)|, and let

q(x) def
=

Td(y)
p(y)

· p(x).

Hence,
∣∣q(x)∣∣ < |p(x)| ≤ 1 for all x ∈ [−1,1], and q(y) = Td(y). Since

|q(x)| < 1 in [−1,1], between any two successive points where Td(x) alter-
nates between +1 and −1, there must exist an xi such that Td(xi) = q(xi).

Hence, Td(x)− q(x) has at least d distinct zeros in the interval [−1,1], and
another zero at y. Hence it is a non-zero polynomial of degree at most d with
d +1 roots, which is a contradiction.

143

Surprisingly, this proposition is used in the proof of a lower bound for ratio-
nal approximations to e−x in Section 6. Along with the proposition above, we
also need an upper bound on the growth of Chebyshev polynomials outside
the interval [−1,1]. This can be achieved using the following closed-form ex-
pression for Td(x) which can be easily verified using the recursive definition
of Chebyshev polynomials.

Proposition 2.5. For any integer d, and x with |x| ≥ 1, we have

Td(x) =
1
2

(
x+
√

x2−1
)d

+
1
2

(
x−
√

x2−1
)d

.

Proof. Let z = x+
√

x2−1. Note that z−1 = x−
√

x2−1. Thus, we wish to
prove that for all d, Td(x) = 1/2 ·

(
zd + z−d

)
. It immediately follows that

1
2
·
(

z0 + z0
)
= 1 = T0(x), and,

1
2
·
(

z1 + z−1
)
= x = T1(x).

Moreover, for d≤ 0, Td(x) = T|d|(x). Assuming Td(x) = 1/2 ·
(

zd + z−d
)

holds
for d = 0, . . . ,k,

Tk+1(x) = 2x ·Tk(x)−Tk−1(x)

= 2x · 1
2
·
(

zk + z−k
)
− 1

2
·
(

zk−1 + z−(k−1)
)

=
1
2
·
(

zk−1(2xz−1)+ z−(k−1)(2xz−1−1)
)

=
1
2
·
(

zk+1 + z−(k+1)
)
,

where in the last equality, we use 2xz = z2 + 1 and 2xz−1 = z−2 + 1, which
follow from 1/2 ·(z+z−1) = x. Thus, by induction, we get that the claim holds
for all d.

Notes

It is an easy exercise to check that Theorem 2.1 is equivalent to showing
that the infimum, over a monic degree-d polynomial p, of supx∈[−1,1] |p(x)|=

144 Chebyshev Polynomials

2−d+1. The minimizer is an appropriately scaled Chebyshev polynomial. An
interesting question is whether we can characterize polynomials that approx-
imate xd up to a larger error, e.g., 2−d/2.

3
Approximating Monomials

In this section, we develop a simple approximation for the function xs on [−1,1] for
a positive integer s using Chebyshev polynomials. We show that xs is approximated
well by a polynomial of degree roughly

√
s.

Recall from Proposition 2.1 that for any d, we can write

x ·Td(x) =
1
2
· (Td−1(x)+Td+1(x)).

If we let Y be a random variable that takes values 1 and −1 with probability
1/2 each, we can write xTd(x) = EY [Td+Y (x)]. This simple observation can be
iterated to obtain an expansion of the monomial xs for any positive integer s
in terms of the Chebyshev polynomials. Throughout this section, let Y1,Y2, . . .

be i.i.d. variables taking values 1 and −1 each with probability 1/2. For any
integer s≥ 0, define the random variable Ds

def
= ∑

s
i=1Yi where D0

def
= 0.

Theorem 3.1. For any integer s ≥ 0, and Y1, . . . ,Ys random variables as
defined above, we have, EY1,...,Ys [TDs(x)] = xs.

Proof. We proceed by induction. For s = 0, we know Ds = 0 and, hence,

145

146 Approximating Monomials

E[TDs(x)] = T0(x) = 1 = x0. Moreover, for any s≥ 0,

xs+1 Induction
= x · E

Y1,...,Ys

TDs(x) = E
Y1,...,Ys

[x ·TDs(x)]

Prop. 2.1
= E

Y1,...,Ys

[
TDs+1(x)+TDs−1(x)

2

]
= E

Y1,...,Ys,Ys+1

[TDs+1(x)].

Theorem 3.1 allows us to obtain polynomials that approximate xs, but have
degree close to

√
s. The main observation is that Chernoff bounds imply that

the probability that |Ds| �
√

s is small. We now state a version of Chernoff
bounds that we need (see [40, Chapter 4]).

Theorem 3.2 (Chernoff Bound). For independent random variables
Y1, . . . ,Ys such that P[Yi = 1] = P[Yi =−1] = 1/2 and for any a≥ 0, we have

P

[
s

∑
i=1

Yi ≥ a

]
= P

[
s

∑
i=1

Yi ≤−a

]
≤ e−a2/2s.

The above theorem implies that the probability that |Ds| >√
2s log(2/δ)

def
= d̂ is at most δ . Moreover, since |TDs(x)| ≤ 1 for all

x ∈ [−1,1], we can ignore all terms with degree greater than d̂ without
incurring an error greater than δ .

We now prove this formally. Let 1|Ds|≤d denote the indicator variable
for the event that |Ds| ≤ d. Our polynomial of degree d approximating xs is
obtained by truncating the above expansion to degree d, i.e.,

ps,d(x)
def
= E

Y1,...,Ys

[
TDs(x) ·1|Ds|≤d

]
. (3.1)

Since TDs(x) is a polynomial of degree |Ds|, and the indicator variable 1|Ds|≤d

is zero whenever |Ds| > d, we obtain that ps,d is a polynomial of degree at
most d.

Theorem 3.3. For any positive integers s and d, the degree-d polynomial
ps,d defined by Equation (3.1) satisfies

sup
x∈[−1,1]

|ps,d(x)− xs| ≤ 2e−d2/2s.

147

Hence, for any δ > 0, and d ≥
⌈√

2s log(2/δ)
⌉
, we have

supx∈[−1,1] |ps,d(x)− xs| ≤ δ .

This theorem allows us to obtain polynomials approximating xs with de-
gree roughly

√
s.

Proof. Using Theorem 3.2, we know that

E
Y1,...,Ys

[
1|Ds|>d

]
= P

Y1,...,Ys

[|Ds|> d] = P
Y1,...,Ys

∣∣∣∣∣ s

∑
i=1

Yi

∣∣∣∣∣> d

≤ 2e−d2/2s.

Now, we can bound the error in approximating xs using ps,d .

sup
x∈[−1,1]

|ps,d(x)− xs| Thm. 3.1
= sup

x∈[−1,1]

∣∣∣∣∣ E
Y1,...,Ys

[
TDs(x) ·1|Ds|>d

]∣∣∣∣∣
≤ sup

x∈[−1,1]
E

Y1,...,Ys

[∣∣TDs(x)
∣∣ ·1|Ds|>d

]
≤ E

Y1,...,Ys

[
1|Ds|>d · sup

x∈[−1,1]

∣∣TDs(x)
∣∣]

Prop. 2.3
≤ E

Y1,...,Ys

[
1|Ds|>d

]
≤ 2e−d2/2s,

which is smaller than δ for d ≥
⌈√

2s log(2/δ)
⌉

.

Over the next several sections, we explore several interesting consequences of
this seemingly simple approximation. In Section 4, we use this approximation
to give improved polynomial approximations to the exponential function. In
Sections 9 and 10, we use it to give fast algorithms for solving linear systems
and computing eigenvalues. We prove that the

√
s dependence is optimal in

Section 5.

Notes

In this section we developed polynomial approximations to xs over the inter-
val [−1,1]. We now point out how such a result can be lifted to a different

148 Approximating Monomials

interval. Suppose a degree-d polynomial p(x) approximates f (x) on the inter-
val [a,b] up to error δ . Applying the transformation x def

= αz+β , with α 6= 0,
we obtain

δ ≥ sup
x∈[a,b]

| f (x)− p(x)|= sup
z∈[(a−β)/α,(b−β)/α]

| f (αz+β)− p(αz+β)|.

Hence, the degree-d polynomial p(αz+β) approximates the function f (αz+
β) on the interval [(a−β)/α, (b−β)/α] up to an error of δ . In order to map the
interval [a,b] to [c,d], we choose α

def
= (a−b)/(c−d) and β

def
= (bc−ad)/(c−d).

Combining such linear transformations with the polynomials ps,d(x) ap-
proximating xs as described in this section, we can construct good approx-
imations for xs over other symmetric intervals: e.g., applying the transfor-
mation x def

= z/2 to the main result from this section, we obtain that for
d ≥

⌈√
2s log(2/δ)

⌉
, the polynomial ps,d(z/2) approximates (z/2)s on [−2,2]

up to an error of δ , or equivalently, 2s · ps,d(z/2) approximates zs on [−2,2] up
to an error of 2s ·δ .

4
Approximating the Exponential

In this section we construct polynomial approximations for the exponential function
using approximations for xs developed in Section 3.

We consider the problem of approximating the exponential function ex.

This is a natural and fundamental function and approximations to it are im-
portant in theory and practice. For applications to be introduced later in the
monograph, we will be interested in approximations to ex over intervals of
the form [−b,0] for b ≥ 0. This is equivalent to approximating e−x on the
interval [0,b] for b≥ 0.

A simple approach to approximating e−x on the interval [0,b] is to trun-
cate the Taylor series expansion of e−x. It is easy to show that using roughly
b+ log 1/δ terms in the expansion suffices to obtain a δ -approximation. We
prove the following theorem that provides a quadratic improvement over this
simple approximation.

Theorem 4.1. For every b > 0, and 0 < δ ≤ 1, there exists a polynomial

149

150 Approximating the Exponential

rb,δ that satisfies
sup

x∈[0,b]
|e−x− rb,δ (x)| ≤ δ ,

and has degree O
(√

max{b, log 1/δ} · log 1/δ

)
.

Equivalently, the above theorem states that the polynomial rb,δ (−x) approxi-
mates ex up to δ on the interval [−b,0]. As discussed in the notes at the end of
the previous section, we can apply linear transformations to obtain approx-
imations over other intervals. For example, the above theorem implies that
the polynomial rb−a,δ (−x+ b) approximates ex−b on [a,b] up to error δ for
b > 1, or equivalently, the polynomial eb · rb−a,δ (−x+b) approximates ex on
[a,b] up to error eb ·δ .

For a proof to the above theorem, we move from the interval [0,b] to the
familiar interval [−1,1] via a linear transformation. After the transformation,
it suffices to approximate the function e−λx−λ over the interval [−1,1], where
λ = b/2 (for completeness, a proof is given at the end of this section).

We now outline the strategy for constructing the approximating polyno-
mials for e−λx−λ over [−1,1]. As mentioned before, if we truncate the Taylor
expansion of e−λx−λ , we obtain

e−λ
t

∑
i=0

(−λ)i

i!
xi

as a candidate approximating polynomial. The candidate polynomial is ob-
tained by a general strategy that approximates each monomial xi in this trun-
cated series by the polynomial pi,d from Section 3. Formally,

qλ ,t,d(x)
def
= e−λ

t

∑
i=0

(−λ)i

i!
pi,d(x).

Since pi,d(x) is a polynomial of degree at most d, the polynomial qλ ,t,d(x) is
also of degree at most d. We now prove that for d roughly

√
λ , the polynomial

qλ ,t,d(x) gives a good approximation to e−λx (for an appropriate choice of t).

Lemma 4.2. For every λ > 0 and δ ∈ (0, 1/2], we can choose t =

O(max{λ , log 1/δ}) and d = O
(√

t log 1/δ

)
such that the polynomial qλ ,t,d

151

defined above, δ -approximates the function e−λ−λx over the interval [−1,1],
i.e.,

sup
x∈[−1,1]

∣∣∣e−λ−λx−qλ ,t,d(x)
∣∣∣≤ δ .

Proof. We first expand the function e−λ−λx via its Taylor series expansion
around 0, and then split it into two parts, one containing terms with degree at
most t, and the remainder.

sup
x∈[−1,1]

∣∣∣e−λ−λx−qλ ,t,d(x)
∣∣∣

≤ sup
x∈[−1,1]

∣∣∣∣∣e−λ
t

∑
i=0

(−λ)i

i!
(xi− pi,d(x))

∣∣∣∣∣+ sup
x∈[−1,1]

∣∣∣∣∣e−λ
∞

∑
i=t+1

(−λ)i

i!
xi

∣∣∣∣∣
≤ e−λ

t

∑
i=0

λ i

i!
sup

x∈[−1,1]

∣∣∣xi− pi,d(x)
∣∣∣+ e−λ

∞

∑
i=t+1

λ i

i!
.

From Theorem 3.3, we know that pi,d is a good approximation to xi, and we
can use it to bound the first error term.

e−λ
t

∑
i=0

λ i

i!
sup

x∈[−1,1]

∣∣∣xi− pi,d(x)
∣∣∣≤ e−λ

t

∑
i=0

λ i

i!
·2e−d2/2i

≤ 2e−d2/2t · e−λ
∞

∑
i=0

λ i

i!

= 2e−d2/2t.

For the second term, we use the lower bound i! ≥ (i/e)i , and assume that
t ≥ λe2 to obtain

e−λ
∞

∑
i=t+1

λ i

i!
≤ e−λ

∞

∑
i=t+1

(
λe
i

)i

≤ e−λ
∞

∑
i=t+1

e−i ≤ e−λ−t .

Thus, if t =
⌈

max{λe2, log 2/δ}
⌉

and d =
⌈√

2t log 4/δ

⌉
, combining the

above and using λ > 0, we obtain

sup
x∈[−1,1]

∣∣∣e−λ−λx−qλ ,t,d(x)
∣∣∣≤ 2e−d2/2t + e−λ−t ≤ δ

2
+

δ

2
≤ δ .

152 Approximating the Exponential

Now, we can complete the proof of Theorem 4.1.

Proof. (of Theorem 4.1) Let λ
def
= b/2, and let t and d be given by Lemma 4.2

for the given value of δ . Define rb,δ
def
= qλ ,t,d

(
1/λ · (x−λ)

)
, where qλ ,t,d is

the polynomial given by Lemma 4.2. Then,

sup
x∈[0,b]

∣∣e−x− rb,δ (x)
∣∣ = supx∈[0,b]

∣∣e−x−qλ ,t,d
(

1/λ · (x− b/2)
)∣∣

= supz∈[−1,1]

∣∣∣e−λ z−λ −qλ ,t,d (z)
∣∣∣≤ δ ,

where the last inequality follows from the guarantee of Lemma 4.2.
The degree of rb,δ (x) is the same as that of qλ ,t,d(x), i.e., d =

O
(√

max{b, log 1/δ} · log 1/δ

)
.

Notes

A weaker version of Theorem 4.1 was proved by Orecchia, Sachdeva, and
Vishnoi in [49]. A similar result is also implicit in a paper by Hochbruck and
Lubich [25]. The approach used in this section can be extended in a straight-
forward manner to construct improved polynomial approximations for other
functions. Roughly, a quadratic improvement in the degree can be obtained if
the Taylor series of the function converges rapidly enough.

5
Lower Bounds for Polynomial Approximations

In this section we prove that the polynomial approximations obtained in the last
couple of sections are essentially optimal. Specifically, we show that polynomial
approximations to xs on [−1,1] require degree Ω(

√
s), and that polynomials approx-

imations to e−x on [0,b] require degree Ω(
√

b). These bounds are derived from a
special case of Markov’s theorem, which we also include.

A useful tool for proving lower bounds on the degree of approximating
polynomials is the following well known theorem by Markov.

Theorem 5.1 (Markov’s Theorem; see [16]). Let p be a degree-d polyno-
mial such that |p(x)| ≤ 1 for any x ∈ [−1,1]. Then p(1), the derivative of p,
satisfies |p(1)(x)| ≤ d2 for all x ∈ [−1,1].

In fact, the above theorem is another example of an extremal property of the
Chebyshev polynomials since they are a tight example for this theorem. This
theorem also generalizes to higher derivatives, where, if p(k) denotes the kth

derivative of p, it states that for any p as in Theorem 5.1, we have

|p(k)(x)| ≤ sup
y∈[−1,1]

|T (k)
d (y)|,

153

154 Lower Bounds for Polynomial Approximations

for all k and x ∈ [−1,1]. This was proved by V. A. Markov [39]; see [54,
Section 1.2] for a proof.

At the end of this section, we sketch a proof of the following special
case of Markov’s theorem, based on the work by Bun and Thaler [12], which
bounds the derivative only at 1 instead of the complete interval and suffices
for proving our lower bounds.

Lemma 5.2. For any degree-d polynomial q such that |q(x)| ≤ 1 for all
x ∈ [−1,1], we have |q(1)(1)| ≤ d2.

We now present the main idea behind the lower bound proofs for xs and e−x.

Say p(x) is an approximating polynomial. Since p(x) is a good approximation
to the function of interest, the range of p must be essentially the same as that
of the function. The crux of both the proofs is to show that there exists a
point t in the approximation interval such that |p(1)(t)| is large. Once we
have such a lower bound on the derivative of p, a lower bound on the degree
of p follows by applying the above lemma to a polynomial q obtained by
a linear transformation of the input variable that maps t to 1. In order to
show the existence of a point with a large derivative, we use the fact that our
function value changes by a large amount over a small interval. Since p is a
good approximation, p also changes by a large amount over the same interval;
the Mean value theorem then implies that there exists a point in the interval
where the derivative of p is large. We now use this strategy to show that any
polynomial that approximates e−x on [0,b] to within 1/8 must have degree at
least

√
b/3.

Theorem 5.3. For every b ≥ 5 and δ ∈ (0, 1/8], any polynomial p(x) that
approximates e−x uniformly over the interval [0,b] up to an error of δ , must
have degree at least 1/3 ·

√
b .

Proof. Suppose p is a degree-d polynomial that is a uniform approximation
to e−x over the interval [0,b] up to an error of δ . Thus, for all x ∈ [0,b], we
have

e−x−δ ≤ p(x)≤ e−x +δ .

Hence, supx∈[0,b] p(x)≤ 1+δ and infx∈[0,b] p(x)≥−δ .

Assume that δ ≤ 1/8, and b ≥ 5 > 3loge 4. Applying the Mean Value
theorem (see [55, Chapter 5]) on the interval [0, loge 4], we know that there

155

exists a t ∈ [0, loge 4], such that

|p(1)(t)|= 1
loge 4

·
∣∣p(loge 4)− p(0)

∣∣
≥ 1

loge 4
· ((1−δ)− (e− loge 4 +δ))≥ 1

2loge 4
.

We define the following polynomial q(x) which is obtained by applying p to
a linear transformation of the input x such that −1 gets mapped to b, and 1
gets mapped to t. We also apply a linear transformation to the resultant so
that the range of q is contained in [−1,1], over the domain [−1,1].

q(x) def
=

1
1+2δ

(
2p
(

t(1+ x)+b(1− x)
2

)
−1

)
.

Since
p([0,b])⊆ [−δ ,1+δ],

we obtain |q(x)| ≤ 1 for all x ∈ [−1,1]. Thus, using Lemma 5.2, we have
|q(1)(1)| ≤ d2. This implies that

|q(1)(1)|= (b− t)|p(1)(t)|
(1+2δ)

≤ d2.

Plugging in the lower bound on |p(1)(t)| proved above and rearranging, it
follows that

d ≥

√
b− t

2 · 5/4 · loge 4
≥ 1

3
·
√

b,

where the last step uses t ≤ loge 4≤ b/3.

A similar proof strategy shows the tightness of the
√

s bound for approxi-
mating xs on the interval [−1,1]. In this case, we show that there exists a
t ∈ [1− 1/s,1] such that |p(1)(t)| ≥ Ω(s) (assuming δ small enough). The
lower bound now follows immediately by applying Lemma 5.2 to the poly-
nomial 1/1+δ · p(tx). Now, we give a proof of the special case of Markov’s
theorem given by Lemma 5.2.

Proof. (of Lemma 5.2) If we expand the polynomial q around x = 1 as fol-
lows,

q(x) = c0 + c1(x−1)+ . . .+ cd(x−1)d ,

156 Lower Bounds for Polynomial Approximations

we have q(1)(1) = c1. Hence, we can express the upper bound on q(1)(1) as
the optimum of the following linear program where the cis are variables and
there are an infinite number of constraints:

max c1 s.t.

∣∣∣∣∣ d

∑
i=0

ci(x−1)i

∣∣∣∣∣≤ 1 ∀x ∈ [−1,1].

Since (−ci)i is a feasible solution whenever (ci)i is a feasible solution, it
suffices to maximize c1 instead of |c1|.

Now, we relax this linear program and drop all constraints except for
x = cos(kπ/d) for integral k 1 between 0 and d:

max c1 s.t.
d

∑
i=0

ci(x−1)i ≤ 1 for x = cos
(

kπ

d

)
with even k,

d

∑
i=0

ci(x−1)i ≥−1 for x = cos
(

kπ

d

)
with odd k.

It suffices to show that the optimum of this linear program is bounded above
by d2. We show this by constructing a feasible solution to its dual program
and write the dual as follows:

min
d

∑
i=0

yi s.t. Ay = e1 and y j ≥ 0 ∀ j.

Here e1 ∈ Rd+1 is the vector (0,1,0, . . . ,0)>, and A is the matrix defined by

Ai j
def
= (−1) j

(
cos
(

jπ
d

)
−1

)i

,

where i = 0, . . . ,d, and j = 0, . . . ,d. One can show that

y =

(
2d2 +1

6
,csc2 π

2d
,csc2 π

d
, . . . ,csc2 (d−1)π

2d
,
1
2

)>
is, in fact, the unique solution to Ay = e1, and satisfies ∑yi = d2. The proof
requires the following elementary trigonometric identities (see [12]):

d

∑
j=0

(−1) j sin2i
(

jπ
2d

)
=

1
2
· (−1)d ,

1Though these particular values seem magical, they are exactly the extremal points of the
Chebyshev polynomial Td(x), which is known to be a tight example for Markov’s theorem.

157

d−1

∑
j=1

csc2
(

jπ
2d

)
=

1
6
· (4d2−4) and

d−1

∑
j=1

(−1) j csc2
(

jπ
2d

)
=−d2

3
− 1

6
− 1

2
(−1)d ,

where the first equality holds for 2i < d. Trivially, y satisfies the positivity
constraints and, by weak duality, implies an upper bound of d2 on the opti-
mum value of the primal linear program.

Notes

In the paper by Bun and Thaler [12], the authors also prove a lemma similar
to Lemma 5.2 that bounds the derivative of the polynomial at 0. The two
lemmas together can be used to obtain a proof of Markov’s theorem (where
the upper bound is tight up to a constant).

The lower bounds presented in this section do not depend on the approx-
imation error δ . An interesting question here is to tighten the lower bound
presented in this section to also incorporate a dependence on δ . For instance,
for approximating the function e−x on [0,b], can we match the upper bound
given by Theorem 4.1?

6
Approximating the Exponential using Rational

Functions

In this section we highlight the power of rational functions by showing that there
exist rational functions of the form 1/p(x), where p is a low degree polynomial, that
approximate e−x over [0,∞), up to an approximation error that decays exponentially
with the degree of the approximation. We also show that no rational approximation
of the form 1/p(x) can do much better.

6.1 Upper Bound

In the last section, we showed that the partial sums of the Taylor series expan-
sion of e−x require a large degree in order to provide a good approximation
over a large interval. We now show that if we instead truncate the Taylor
series expansion of ex = 1/e−x to degree d and take its reciprocal, we can ap-
proximate e−x on [0,∞) up to 2−Ω(d) error. We let

Sd(x)
def
=

d

∑
k=0

xk

k!
.

158

6.1. Upper Bound 159

Theorem 6.1. For all integers d ≥ 0,

sup
x∈[0,∞)

∣∣∣∣ 1
Sd(x)

− e−x
∣∣∣∣≤ 2−Ω(d).

Hence, for any δ > 0, we have a rational function of degree O(log 1/δ) that is
a δ -approximation to e−x.

Proof. First, observe that for all d, and all x∈ [0,∞) , we have Sd(x)≤ ex and,
hence, 1/Sd(x)− e−x ≥ 0. We divide [0,∞) into three intervals:[

0,
d +1

3

)
,

[
d +1

3
,
2(d +1)

3

)
, and

[
2(d +1)

3
,∞

)
,

and show a bound on the approximation error on each of these intervals. If
x ≥ 2(d+1)/3, both the terms are exponentially small. Using Sd(x) ≥ xd/d! and
d!≤ (d+1

2)d , we obtain

∀x ∈
[

2(d+1)
3 ,∞

)
,

∣∣∣∣ 1
Sd(x)

− e−x
∣∣∣∣≤ 1

Sd(x)
≤ d!

xd ≤
(

d +1
2x

)d

≤
(

3
4

)d

= 2−Ω(d),

Now, assume that x < 2(d+1)/3. We have,∣∣∣∣ 1
Sd(x)

− e−x
∣∣∣∣= e−x

Sd(x)

(
xd+1

(d +1)!
+

xd+2

(d +2)!
+ . . .

)

≤ e−x

Sd(x)
· xd+1

(d +1)!

(
1+

x
d +1

+
x2

(d +1)2 + . . .

)

≤ 3
e−x

Sd(x)
· xd+1

(d +1)!
. (6.1)

If x ∈ [d+1/3, 2(d+1)/3) , we use that e−x is exponentially small, and show that
the numerator is not much larger than Sd(x). We use Sd(x)≥ xd/d! in (6.1) to
obtain

∀x ∈
[

d+1
3 , 2(d+1)

3

)
,

∣∣∣∣ 1
Sd(x)

− e−x
∣∣∣∣≤ 3e−

d+1
3 · x

d +1
≤ 2e−d/3 = 2−Ω(d).

160 Approximating the Exponential using Rational Functions

Finally, if x < (d+1)/3, we use that Sd(x) is an exponentially good approxima-
tion of ex in this range. Using (d +1)! ≥ ((d+1)/e)d+1 and Sd(x) ≥ 1 in (6.1)
to obtain

∀x ∈
[
0, d+1

3

)
,

∣∣∣∣ 1
Sd(x)

− e−x
∣∣∣∣≤ 3

(
xe

d +1

)d+1

≤ 3
(

e
3

)d+1

= 2−Ω(d).

A more careful argument by Cody, Meinardus, and Varga [19] shows that, in
fact, 1/Sd(x) approximates e−x up to an error of 2−d .

6.2 Lower Bound

We now show that polynomials cannot do much better. We give a simple
proof that shows that for any rational function of the form 1/pd(x) which ap-
proximates e−x on [0,∞) where pd(x) is a degree-d polynomial, the error
cannot decay faster than exponentially in the degree.

Theorem 6.2. For every degree-d polynomial pd(x) with d large enough,
supx∈[0,∞)

∣∣e−x− 1/pd(x)
∣∣≥ 50−d .

Proof. Assume, on the contrary, that for some large enough d there exists a
degree-d polynomial pd(x) such that 1/pd(x) approximates e−x up to an error
of 50−d on [0,∞). Thus, for all x ∈ [0,d], we have

1
pd(x)

≥ e−d−50−d ≥ 1
2
· e−d ,

i.e., |pd(x)| ≤ 2ed . Hence, the degree-d polynomial 1/2 · e−d · pd (d/2+ d/2 · y)
is bounded by 1 in absolute value over the interval [−1,1]. Using Propo-
sition 2.4, which implies that the Chebyshev polynomials have the fastest
growth amongst such polynomials, we obtain∣∣∣∣12 · e−d · pd

(
d
2
+

d
2
· y
)∣∣∣∣≤ |Td(y)|.

6.2. Lower Bound 161

Using the closed-form expression for Chebyshev polynomials given in Propo-
sition 2.5, we have

∀y s.t. |y| ≥ 1, Td(y) =
1
2

(
y+
√

y2−1
)d

+
1
2

(
y−
√

y2−1
)d

.

Thus, for y = 7, we have

pd(4d)≤ 2ed ·Td(7)≤ 2ed ·14d .

This implies that for x = 4d, we obtain∣∣∣∣e−x− 1
pd(x)

∣∣∣∣≥ 1
pd(x)

− e−x ≥ 1
2
(14e)−d− e−4d ,

which is larger than 50−d for d large enough. This contradicts the assumption
that 1/pd(x) approximates e−x for all x ∈ [0,∞) up to an error of 50−d .

Notes

In this section we constructed a rational approximation for the exponen-
tial function by taking the inverse of the truncation of a Taylor expansion
of the inverse of the exponential function. This approach can be applied to
other functions as well. Newman [45] used this approach to construct a ra-
tional approximation to xs for x ∈ [0,1]. Specifically, he chose the Taylor
expansion of the function x−s around 1 (instead of 0), and truncated it to de-
gree d, obtaining a candidate approximation for xs of the form 1/q(x) where
q(x) = ∑

d
i=0
(s+i−1

i

)
(1− x)i. Newman [45] proved that for all x ∈ [0,1], we

have
∣∣1/q(x)− xs

∣∣ ≤ 2/d · ((2s−2)/(2s+d))s−1 , implying that d = Θ(log 1/δ) suf-
fices for achieving error δ .

The exact rate of decay of the best approximation for e−x using rational
functions was a central problem in approximation theory for more than 15
years. Cody, Meinardus, and Varga [19] were the first to prove a lower bound
of 6−d+o(d) for rational functions of the form 1/pd(x) where pd is a degree-d
polynomial. Schönhage [60] proved that the best approximation of the form
1/pd(x) achieves an approximation error of 3−d+o(d). Newman [44] showed
that even for an arbitrary degree-d rational function, i.e., pd(x)/qd(x) approxi-
mating e−x, where both pd(x) and qd(x) are polynomials of degree at most

162 Approximating the Exponential using Rational Functions

d, the approximation error cannot be smaller than 1280−d . The question was
settled by Gonchar and Rakhmanov [20] who finally proved that the small-
est approximation error achieved by arbitrary degree-d rational functions is
c−d(1+o(1)), where c is the solution to an equation involving elliptic integrals.

7
Approximating the Exponential using Rational

Functions with Negative Poles

Motivated by applications to speeding up certain algorithms, in this section we study
rational approximations for e−x with negative poles and approximation error that
decays exponentially in the degree.

In the previous section, we constructed degree-d rational approximations
for e−x on [0,∞) with the approximation error decaying exponentially with
d. For some applications, such as approximating the matrix exponential (dis-
cussed in Section 11) and numerical solutions to differential equations, it
is desirable to have approximations that satisfy an additional condition: all
their poles (i.e., roots of the denominator) are negative (see [19, 59]). Further,
such rational approximations have been used, in combination with powerful
Laplacian solvers, to design near-linear time algorithms that compute approx-
imations to exp(−L)v when L is a graph Laplacian; see Section 11. Approxi-
mations to e−x by rational functions with negative poles were first studied by
Saff, Schönhage, and Varga [59], who showed that there exist such approxi-
mations which still have the property that the approximation error decreases
exponentially with the degree. In this section, we present a proof of their
result.

163

164 Rational Approximations to e−x with Negative Poles

We start by arguing why the rational approximation for e−x constructed
in the previous section, namely 1/Sd(x), does not already give us the desired
result. Towards this, we need to understand the zeros of Sd(x) which have
been well studied (see [68] for a survey). It is fairly simple to show that Sd(x)
has exactly one real zero xd ∈ [−d,−1] if d is odd, and no real zeros if d is
even. It is also known that the zeros of Sd(x) grow linearly in magnitude with
d. In fact, it was proved by Szegö [63] that if all the (complex) zeros of Sd are
scaled down by d, as d goes to infinity they converge to a point on the curve
|ze1−z| = 1 on the complex plane. Thus, we can rule out the approximation
1/Sd(x).

How about the approximation (1+ x/d)−d? Trivially, it is a simple rational
function where the denominator has only negative zeros, and converges to e−x

uniformly over [0,∞). However, the convergence rate of this approximation
is slow with respect to d and it is easily seen that the approximation error
at x = 1 is Θ(1/d). Saff, Schönhage, and Varga [59] showed that for every
rational function of the form 1/pd(x), where pd is a degree-d polynomial with
real roots,

sup
x∈[0,∞)

|e−x− 1/pd(x)|= Ω(1/d2).

Surprisingly, the authors of [59] showed that rational functions of the form
pd

(
1

1+x/d

)
can approximate e−x up to O(d2−d) for some degree-d polynomial

pd(·); see also [4]. Formally, the authors of [59] proved the following.

Theorem 7.1. For every d, there exists a degree-d polynomial pd such that,

sup
x∈[0,∞)

∣∣∣∣e−x− pd

(
1

1+ x/d

)∣∣∣∣≤ O(d ·2−d).

Moreover, the coefficients of pd are bounded by dO(d), and can be approxi-
mated up to an error of d−Θ(d) using poly(d) arithmetic operations, where all
intermediate numbers can be expressed using poly(d) bits.

The proof starts with the variable transformation

y def
= 1−2(1+ x/d)−1

which maps the infinite interval [0,∞) to a finite one, namely to [−1,1]. Thus,
e−x can be written as the following function of y:

fd(y)
def
= exp(−d · (1+y)/(1−y)) = e−x.

165

We define fd(1) = 0 and observe that y now varies over the interval [−1,1].
Thus, if we find a degree-d polynomial which is δ -close to fd(y) throughout
the interval [−1,1], then transforming back to x, we obtain a rational function
of degree-d that δ -approximates e−x over [0,∞).

One approach to finding such a polynomial would be to use the approxi-
mation obtained from truncating the Taylor series for fd(y). Concretely, start
with the polynomial Qd(y) obtained by truncating, up to degree d, the Taylor
series expansion of the function f1(y) = exp(−(1+y)/(1−y)) around y = −1.
Then, consider the degree-d2 polynomial Qd

d(y). This polynomial can be
shown to provide us with a 2−Θ(d)-approximation (with degree d2 instead
of d) for the function fd(y). However, the proof of this is complicated, and it
is not clear how to improve this approach to achieve a similar approximation
using a degree-d rational function, as in Theorem 7.1.

In the rest of this section, we present a simplification of the proof of
Theorem 7.1 from [59]. The proof, again, considers fd(y) and constructs a
degree-d polynomial which achieves the desired approximation. Unlike the
approach in the previous paragraph, this polynomial is chosen to be an opti-
mizer to an `2-minimization problem as follows. We start by arguing that in
order to find a good degree-d uniform approximation to fd(y), it is sufficient
to solve an `1-optimization problem. Since fd(1) = 0, for any polynomial
q(y) which satisfies q(1) = 0,1 we can write the error at a point y as

| fd(y)−q(y)|=

∣∣∣∣∣
∫ 1

y
(f (1)d (t)−q(1)(t))dt

∣∣∣∣∣ ,
where f (1)d and q(1) denote the respective derivatives. Applying the triangle
inequality, we can bound the above by

∫ 1
−1 | f

(1)
d (t)− q(1)(t)|dt for all y ∈

[−1,1]. Since

∫ 1

−1
| f (1)d (t)−q(1)(t)|dt ≤

√
2

√∫ 1

−1

(
f (1)d (t)−q(1)(t)

)2
dt

by the Cauchy-Schwarz inequality, we can further reduce our task to the `2-

1Observe that this assumption can result in the approximation error increasing by at most
a factor of 2.

166 Rational Approximations to e−x with Negative Poles

problem of finding the degree-(d−1) polynomial r(t) which minimizes∫ 1

−1

(
f (1)d (t)− r(t)

)2
dt.

The minimizer for this problem can be characterized exactly in terms of
Legendre polynomials. Recall (from the notes at the end of Section 1) that
the (normalized) Legendre polynomials, namely,

√
(2k+1)/2 · Lk(x), are or-

thonormal for k = 0,1, . . . with respect to the uniform weight on [−1,1].
Thus, the `2-error of the minimizer is exactly ∑

∞
k=d(2k+ 1)γ2

k , where γk
def
=∫ 1

−1 f (1)d (t)Lk(t)dt is the inner product of f (1)d with Lk.

The remainder of the proof consists of algebraic manipulations to show
that ∑

∞
k=d(2k + 1)γ2

k is of the order of d2 · 4−d , giving us the theorem. We
also end up using properties of Laguerre polynomials, which naturally show
up while understanding higher order derivatives of fd(y). The proof, in all its
detail, is quite involved and can be skipped in the first reading.

Proof. (of Theorem 7.1) We prove the theorem in two parts. We first prove
the existence of a good polynomial pd , and then revisit the proof carefully to
show that the coefficients of pd are bounded and can be computed efficiently
up to the required approximation error.

Reduction to an `2-approximation problem. Let f (k)d denote the k-th
derivative of fd , i.e.,

f (k)d (t) def
=

dk

dtk fd(t).

As outlined above, we first reduce our problem to an `2-approximation prob-
lem.

inf
qd∈Σd

sup
y∈[−1,1]

∣∣ fd(y)−qd(y)
∣∣≤ inf

rd−1∈Σd−1
sup

y∈[−1,1]

∣∣∣∣∣
∫ 1

y
(f (1)d (t)− rd−1(t))dt

∣∣∣∣∣
≤ inf

rd−1∈Σd−1

∫ 1

−1

∣∣∣ f (1)d (t)− rd−1(t)
∣∣∣dt

≤
√

2 inf
rd−1∈Σd−1

√∫ 1

−1

(
f (1)d (t)− rd−1(t)

)2
dt.

(7.1)

167

The first inequality holds if we take the infimum over all degree-d polyno-
mials qd , and all degree-(d−1) polynomials rd−1. We know how to write an
explicit solution to the optimization problem in the last expression. We re-
quire orthogonal polynomials on [−1,1] under the uniform (constant) weight
function, which are given by Legendre polynomials

Lk(t)
def
=

1
2k · k!

dk

dtk [(t
2−1)k],

and satisfy ∫ 1

−1
Li(t)L j(t)dt =

0 if i 6= j
2

2i+1 otherwise;

see [64]. Hence, we can write the last expression explicitly to obtain

inf
qd∈Σd

sup
y∈[−1,1]

∣∣ fd(y)−qd(y)
∣∣≤√∑

k≥d
(2k+1)γ2

k , (7.2)

where, as before, the infimum is taken over all degree-d polynomials qd , and
γk denotes the inner product of f (1)d with the k-th Legendre polynomial γk

def
=∫ 1

−1 f (1)d (t)Lk(t)dt. We now bound the coefficients γk.

Bounding the coefficients γk. Plugging in the definition of Legendre
polynomials, and using integration by parts successively, we obtain

γk =
1

2k · k!

∫ 1

−1
f (1)d (t)

dk

dtk [(t
2−1)k]dt

=
(−1)k

2k · k!

∫ 1

−1
(t2−1)k f (k+1)

d (t)dt. (7.3)

If we let v def
= 2d

(1−t) , we obtain, fd(t)= ed−v and f (1)d (t)= −1
(1−t)ved−v. A simple

induction argument generalizes this to give

(1− t)k+1 f (k+1)
d (t) =−ed dk

dvk [v
k+1e−v].

We now invoke the generalized Laguerre polynomials of degree k which are
orthogonal with respect to the weight function ve−v, defined to be

Gk(v)
def
=

1
k!
· 1

ve−v ·
dk

dvk [v
k+1e−v];

168 Rational Approximations to e−x with Negative Poles

see [64]. Hence, simplifying (7.3), we obtain

γk =
−ed

2k

∫ 1

−1
(t +1)k ve−v

(1− t)
Gk(v)dt =−ed

∫
∞

d

(
1− d

v

)k

e−vGk(v)dv.

Squaring the above equality, and applying Cauchy-Schwarz, we obtain

γ
2
k ≤ e2d

∫
∞

d
ve−v(Gk(v))2 dv ·

∫
∞

d

1
v

(
1− d

v

)2k

e−v dv.

Now, we use the fact that
∫

∞

0 ve−v(Gk(v))2 dv= k+1 (see [64]), and substitute
v = d(1+ z) to obtain

γ
2
k ≤ ed(k+1)

∫
∞

0

z2k

(z+1)2k+1 e−dz dz. (7.4)

Obtaining the final error bound. Plugging this back in (7.2), we obtain(
inf

qd∈Σd
sup

y∈[−1,1]

∣∣ fd(y)−qd(y)
∣∣)2

≤ ed
∫

∞

0
∑
k≥d

(k+1)(2k+1)
z2k

(z+1)2k+1 e−dz dz.

We can sum up the series in the above equation for any z≥ 0 to obtain

∑
k≥d

(k+1)(2k+1)
z2k

(z+1)2k+1 .

(
z

z+1

)2d−2

(d2 +dz+ z2).

Here . means that the inequality holds up to an absolute constant. This im-
plies that(

inf
qd∈Σd

sup
y∈[−1,1]

∣∣ fd(y)−qd(y)
∣∣)2

.
∫

∞

0

(
z

z+1

)2d−2

(d2 +dz+ z2)ed−dz dz.

It is a simple exercise to show that for all z ≥ 0, the expression

ed−dz+z
(

z
z+1

)2d−2
is maximized for z = 1 and, hence, this expression is

bounded by 4e ·4−d . Thus,(
inf

qd∈Σd
sup

y∈[−1,1]

∣∣ fd(y)−qd(y)
∣∣)2

. 4−d
∫

∞

0
(d2 +dz+ z2)e−z dz . d2 ·4−d ,

which concludes the proof of existence of a good pd .

169

Computing the coefficients of pd. We now show that the coefficients of
pd are bounded in magnitude, and can be computed efficiently.

It suffices to compute them to a precision of 2−poly(d) and we present the
main steps. Recall that in the proof of Theorem 7.1, the polynomial rd−1(t)

which minimizes
∫ 1
−1

(
f (1)d (t)− rd−1(t)

)2
dt (see Equation (7.1)) is given by

rd−1(t) =
d−1

∑
k=0

√
2k+1√

2
· γk ·Lk(t).

The Legendre polynomials can be written as (see [2, Chapter 22])

Lk(t) = 2−k
b k/2c
∑
i=0

(−1)i xk−2i ·
(

k
i

)(
2k−2i

k

)
.

Thus, assuming we know {γk}d−1
k=0 , we can compute the coefficients of rd−1

in poly(d) operations, and the sizes of the coefficients of rd−1 can be 2O(d)

larger. Since qd(y) =
∫ 1

y rd−1(t)dt, given the coefficients of rd−1, we can sim-
ply integrate in order to find the coefficients of qd . The approximating poly-
nomial pd(x) is given by pd(x)

def
= qd(1− 2x). Hence, given the coefficients

of qd , those of pd can be calculated in poly(d) operations, and again can only
be at most 2O(d) larger. Hence, it suffices to show how to compute {γk}d−1

k=0 .

With the substitution z = d(1+ v) in Equation (7.3), we have

γk =−d
∫

∞

0

(
z

z+1

)k

e−dzGk(d(1+ z))dz.

The Laguerre polynomials Gk (of order 1) are explicitly given to be

Gk(t) =
k

∑
i=0

(−1)i
(

k+1
k− i

)
t i

i!
,

see [2, Chapter 22]. After using this expansion for Gk, it suffices to compute
the integrals

∫
∞

0
zi

(z+1) j e−dz dz for 0 ≤ j ≤ i ≤ d. If we know the values of
these integrals, we can compute the γks in poly(d) operations, although the
coefficients may increase by a factor of dO(d). For any 0 ≤ j ≤ i ≤ d, by
substituting w = z+1, we obtain∫

∞

0

zi

(z+1) j e−dz dz = ed
∫

∞

1

(w−1)i

w j e−dw dw.

170 Rational Approximations to e−x with Negative Poles

Since we can expand (w−1)i using the Binomial theorem, it suffices to com-
pute integrals of the form

∫
∞

1 w− je−dw dw for −d ≤ j ≤ d, where again we
lose at most 2O(d) in the magnitude of the numbers. For j≤ 0, this is a simple
integration. For j≥ 1, the integral can be expressed using the Exponential In-
tegral. Hence, it has the following rapidly convergent power series for d > 1,
which can be used both to compute and to bound E j(d)s easily:

E j(d)
def
=
∫

∞

1
w− je−dw dw =

e−d

d

∞

∑
k=0

(−1)k(j+ k−1)!
(j−1)!dk ;

see [30]. Combining everything, the coefficients of pd can be approximated
up to d−Θ(d) error in time poly(d) using poly(d) sized registers.

Notes

The main result in this section is, undoubtedly, not as transparent as we would
have liked it to be. Given the importance of the result, it remains an interesting
problem to determine an intuitive reasoning as to why such a result should
hold. An answer may be useful in understanding to what extent the poles of a
degree-d rational approximation for a given function can be restricted while
fixing the error.

Part II

APPLICATIONS

Notation: Matrices and Graphs

The following sections shall primarily deal with n× n symmetric matrices
over the reals. A fundamental theorem in linear algebra (see [66, Chapter 1])
asserts that every symmetric matrix A ∈ Rn×n has n real eigenvalues along
with eigenvectors that can be chosen to be orthogonal. Thus, A can be writ-
ten as UΛU> where the columns of U are the eigenvectors of A and Λ is
the diagonal matrix corresponding to its eigenvalues. Hence, we also have
U>U = I. A is said to be positive semidefinite (PSD) if all its eigenvalues
are non-negative and positive definite (PD) if all its eigenvalues are strictly
positive. We will use the notation A� 0 (respectively A� 0) to denote that A
is PSD (respectively PD). The notation A� B (respectively A� B) is equiva-
lent to A−B � 0 (respectively A−B � 0). The spectral norm of a matrix A,
also sometimes called its 2→ 2 norm, is defined to be supx 6=0

‖Ax‖2
‖x‖2

. Thus, all
eigenvalues of A are bounded in absolute value by the spectral norm of A. For
a PSD matrix, its norm is equal to its largest eigenvalue. Henceforth, ‖·‖ will
be used to denote the `2 norm for vectors and the spectral norm for matrices.
For a PD matrix A, its condition number κ(A) is the ratio of the largest eigen-
value to the smallest eigenvalue. Finally, for a vector v and a PSD matrix A,
we define ‖v‖A

def
=
√

v>Av.

For a matrix A, and a degree-d polynomial p(x) def
= ∑

d
i=0 cixi, we define

p(A) to be ∑
d
i=0 ciAi. Similarly for a function f : R 7→R defined by the power

172

173

series f (x) = ∑i≥0 cixi, we define f (A) to be ∑i≥0 ciAi. Thus, exp(A) or eA

is ∑k≥0
Ak

k! . If A is a real symmetric matrix with the spectral decomposition

UΛU>, this is equivalent to the definition f (A) def
= U f (Λ)U>, where f (Λ) is

the diagonal matrix with the (i, i)-th entry being equal to f (Λ(i,i)).

For an n×n matrix A and a vector v, often we are interested in the solution
to the system of equations Ax = v. We only consider the case when either A
is invertible or v lies in the span of the columns of A. In either case, with a
slight abuse of notation, we denote the solution by x = A−1v. The all 1s and
all 0s vectors are denoted by 1 and 0 respectively.

Finally, we will work with undirected graphs G = (V,E) with n def
= |V |

vertices and m def
= |E| edges. The edges of the graph may have positive weights

and this is captured by the adjacency matrix A of the graph; an n×n matrix
where Ai, j is the weight of the edge between i and j. We assume that the graph
has no self-loops and, hence, Ai,i = 0 for all i. Since the graph is undirected,
A is symmetric and has 2m non-zero entries. Let ei denote the vector with a 1
in the i-th coordinate and 0s elsewhere. The matrix L def

= ∑i, j Ai, j(ei−e j)(ei−
e j)
> is called the combinatorial Laplacian of G. If D is the diagonal matrix

with Di,i
def
= ∑ j 6=i Ai, j, then L = D−A. D is called the degree matrix of G. The

Laplacian L of a graph G is always PSD; L� 0.

8
Simulating Random Walks

We begin our set of applications with a simple consequence of the polynomial ap-
proximations to xs developed in Section 3: Random walks on graphs can be simulated
quadratically faster.

Consider a connected and undirected graph G=(V,E) with |V |= n, |E|=
m, and let A and D respectively denote its adjacency matrix and the diagonal
matrix of degrees. The simple random walk on such a graph corresponds to
the process where, starting at a vertex i, one selects a vertex j with probability
proportional to its weight Ai, j, and then repeats with j as the starting vertex.
Suppose we select an initial vertex from the probability distribution v ∈ Rn

and perform an s-step random walk. The probability distribution of the vertex
after s steps of this random walk is given by W̃ sv, 1 where W̃ def

= AD−1. It
is well-known that when v is a probability distribution over V and G is con-
nected, as s tends to infinity, W̃ sv tends to the vector where the i-th entry is

1The convention in the literature on Markov chains is to express the probability distribution
as a row vector v> instead, giving the probability after s steps as v>W̃ s. We will use the
column vector convention. The only resulting change is that the walk matrix is replaced by its
transpose everywhere.

174

8.1. Quadratically Faster Random Walks: Proof of Theorem 8.1 175

proportional to the degree of the i-th vertex. This limit is the vector D1 up to
scaling and is independent of the starting vector.

In this section we consider the problem of computing products of the form

W̃ sv

where v could be an arbitrary real vector (of `2-norm 1) rather than a proba-
bility vector. This problem is not only useful in the design of fast algorithms
for the Sparsest Cut problem (refer to the notes at the end of this section), it is
also of independent interest. The straightforward algorithm for this problem,
which computes W̃ s by repeatedly multiplying by W̃ , runs in time roughly
O(ms). However, in applications, s could be Ω(n) and, thus, the question we
ask here is how much can this dependence on s be improved. The main result
of this section shows how we can improve the dependence on s to roughly√

s.

Theorem 8.1. Let W̃ be the random walk matrix for a graph G with n ver-
tices and m edges. There is an algorithm that, given any positive integer s, a
unit vector v, and δ ∈ (0, 1/2], computes a vector w such that

∥∥∥W̃ sv−w
∥∥∥≤ δ

in O
(
(m+n)

√
s log 1/δ

)
arithmetic operations.

8.1 Quadratically Faster Random Walks: Proof of Theorem
8.1

As mentioned earlier, a simple way to compute W̃ sv is to multiply the ma-
trix W̃ with v a total of s times, which requires O(ms) operations. We now
show that, as an immediate application of the polynomial approximations to
xs that we developed in Section 3, we can approximate this distribution using
roughly

√
s multiplications with W̃ . First, we extend Theorem 3.3 to matrices.

Theorem 8.2 (Corollary to Theorem 3.3). For a symmetric M with ‖M‖ ≤
1, a positive integer s, and any δ > 0, define d def

=
⌈√

2s log 2/δ

⌉
. Then, the

degree-d polynomial ps,d(M), defined by (3.1) satisfies
∥∥Ms− ps,d(M)

∥∥≤ δ .

Proof. Let {λi}i be the eigenvalues of M with {ui}i as a set of corresponding
orthogonal eigenvectors. Since M is symmetric and ‖M‖ ≤ 1, we have λi ∈

176 Simulating Random Walks

[−1,1] for all i. Thus, Theorem 3.3 implies that for all i, |λ s
i − ps,d(λi)| ≤ δ .

Note that if λi is an eigenvalue of M, then λ s
i − ps,d(λi) is the corresponding

eigenvalue of Ms− ps,d(M) with respect to the same eigenvector. Hence, we
have ∥∥Ms− ps,d(M)

∥∥= max
i
|λ s

i − ps,d(λi)| ≤ δ .

When we try to apply this theorem to W̃ we face the obvious problem that
W̃ is not necessarily symmetric. This can be handled by considering the
matrix W def

= D−1/2W̃D1/2 = D−1/2AD−1/2, which is symmetric. Thus, W̃ sv =

D1/2W sD−1/2v. We focus on proving Theorem 8.1 for the case when G is regu-
lar. In this case W̃ =W. The non-regular case follows from a straightforward
extension of this proof and we omit the details. Note that ‖W‖ ≤ 1 since W
is a doubly stochastic matrix.

Note that if we can compute the coefficients of ps,d efficiently, then

we can quickly compute ps,d(W)v for d =
⌈√

2s log 2/δ

⌉
. Thus, appealing

to the theorem above, we obtain an efficient δ approximation to W sv, i.e.,∥∥W sv− ps,d(W)v
∥∥ ≤ δ ‖v‖ ≤ δ . In order to compute the coefficients, first

observe that we do not need to explicitly compute the coefficients of the
polynomial ps,d since we can use the expansion of ps,d in terms of Cheby-
shev polynomials as in (3.1) and the recursive definition of Chebyshev poly-
nomials from (2.1) to compute the vectors T0(W)v, . . . ,Td(W)v using only d
multiplications with the matrix W.

The expansion of ps,d in terms of Chebyshev polynomials given by (3.1)
implies that the non-zero coefficients are binomial coefficients up to a scaling
factor. For instance, assuming that s is even, the coefficient of T2 j(·) for j 6= 0
is 2−s+1

(s
s/2+ j

)
. Prima facie, computing each of these binomial coefficients

requires O(s) multiplications and divisions, which is worse than the trivial
O(ms) time algorithm to compute W sv. However, observe that since the non-
zero coefficients are scaled binomial coefficients, if ci is the coefficient of
Ti, the ratios ci/c0 are rational numbers that we can compute explicitly and
quickly. Define α to be the sum of the coefficients of T0(·), . . . ,Td(·) in ps,d ,

8.1. Quadratically Faster Random Walks: Proof of Theorem 8.1 177

i.e.,

α
def
=

d

∑
i=0

ci = P
Y1,...,Ys

[|Ds| ≤ d] ,

where we use the notation from Section 3. We know that α lies between 1
and 1−δ . Express ci as,

ci = α · ci

∑
d
j=0 c j

= α ·
ci/c0

∑
d
j=0 c j/c0

.

Since we can explicitly compute the ratios ci/c0, and hence also σ
def
=

∑
d
i=0 ci/c0, we can explicitly compute 1/σ ·ci/c0 = ci/α (which is approximately

ci). Hence, we can compute the coefficients in the Chebyshev expansion of
the polynomial α−1 · ps,d(·), and it satisfies

sup
x∈[−1,1]

∣∣∣α−1 · ps,d(x)− xs
∣∣∣≤ δ

(1−δ)
= O(δ).

This completes the proof of Theorem 8.1.2

Notes

Theorem 8.1 can be easily generalized to a reversible irreducible Markov
chain. An open problem is to obtain a version of Theorem 8.1 where the
dependence on s is better than

√
s. (See the notes at the end of Section 11 for

an approach.)

Finally, Theorem 8.1 can be used, along with the connection between
random walks and sparse cuts, to show how speeding up random walks allows
us to quadratically speed up finding sparse cuts in undirected graphs. For a
graph G = (V,E) with adjacency matrix A, a set S⊆V is said to have sparsity

2 An important issue we need to note is the bit length of the numbers involved. Even though
it is not possible to store these numbers precisely, here we show that a small number of bits are
sufficient to store these numbers. Assume that we store each of the numbers in b-bit registers.
All the numbers involved in computing the ratios of successive coefficients are O(s), thus
we need b = Ω(logs). Each of these ratios can be computed to an accuracy of O(2−b), and
since there are O(d) multiplications/divisions involved, we can compute all of ci/c0 up to an
accuracy of O(d2−b). Hence, the absolute error in σ is at most O(d22−b). This implies that if
d22−b = O(δ), the error in the estimate u is at most O(δ)‖v‖ . Thus, b = Θ(log s/δ) suffices.

178 Simulating Random Walks

or conductance

φ(S) def
=

∑i∈S ∑ j 6∈S A(i, j)

min
(

∑i∈S ∑ j∈V A(i, j),∑i6∈S ∑ j∈V A(i, j)
) .

Thus, for a set S ⊆ V, Φ(S) is the ratio of the edges going across the
cut (S,V \ S), to the total number of edges incident on the vertices in S
or V \ S, whichever is less. The conductance of a graph is defined to be
φ

def
= minS⊆V φ(S). The Sparsest Cut problem is to compute a cut which min-

imizes conductance. This problem is NP-hard and is an extremely important
problem in both theory and practice; see [66, Chapter 5] for a detailed discus-
sion on this problem. A celebrated result of Cheeger [15] and Alon and Mil-
man [3] relates the second smallest eigenvalue of the Laplacian L def

= D−A
of G, denoted λ2(L), to the conductance of the graph. Often referred to as
Cheeger’s inequality, the result, stated here for d-regular graphs, asserts that

φ ≤ O

(√
λ2

d

)
.

Let λ
def
= λ2/d be the normalized spectral gap and L def

= 1
d L be the normalized

Laplacian. For a connected graph, λ ∈ (0,2] and the interesting case is when
λ is small. The results of this section can be used to prove the following
theorem whose dependence on λ is roughly 1/

√
λ as opposed to the 1/λ that

can be obtained by the Power method; see also Section 10.

Theorem 8.3. Given an undirected graph G with normalized spectral gap
λ , we can find a cut of conductance O(

√
λ) with probability at least 1/3 using

O(m/
√

λ · log n/λ) operations.

9
Solving Linear Equations via the Conjugate

Gradient Method

In this section we discuss the problem of solving a system of linear equations. We
first present the Conjugate Gradient method which works when the corresponding
matrix is positive definite. We then give a simple proof of the rate of convergence of
this method by using the polynomial approximations for xs developed in Section 3.

Given a matrix A ∈ Rn×n and a vector v ∈ Rn, our goal is to find a vec-
tor x ∈ Rn such that Ax = v. The exact solution x? def

= A−1v can be computed
by Gaussian elimination, but the fastest known implementation requires the
same time as matrix multiplication (currently O(n2.737)). For many applica-
tions, the number of non-zero entries in A (denoted by m), or its sparsity, is
much smaller than n2 and, ideally, we would like linear solvers which run in
time Õ(m) 1, roughly the time it takes to multiply a vector with A. While we
are far from this goal for general matrices, iterative methods, based on tech-
niques such as gradient descent or the Conjugate Gradient method reduce the
problem of solving a system of linear equations to the computation of a small
number of matrix-vector products with the matrix A when A is symmetric and

1The Õ notation hides polynomial factors in logn.

179

180 Solving Equations via the Conjugate Gradient Method

positive definite (PD). These methods often produce only approximate solu-
tions. However, these approximate solutions suffice for most applications.
While the running time of the gradient descent-based method varies linearly
with the condition number of A, that of the Conjugate Gradient method de-
pends on the square-root of the condition number; the quadratic saving oc-
curring precisely because there exist

√
s- degree polynomials approximating

xs. The guarantees of the Conjugate Gradient method are summarized in the
following theorem:

Theorem 9.1. Given an n×n symmetric matrix A� 0, and a vector v∈Rn,

the Conjugate Gradient method can find a vector x such that ‖x−A−1b‖A ≤
δ‖A−1b‖A in time O((tA + n) ·

√
κ(A) log 1/δ), where tA is the time required

to multiply A with a given vector, and κ(A) is the condition number of A.

9.1 A Gradient Descent Based Linear Solver

The gradient descent method is a general method to solve convex programs;
here we only focus on its application to linear systems. The PD assumption
on A allows us to formulate the problem of solving Ax = v as a convex pro-
gramming problem: For the function

fA(x)
def
=
∥∥x− x?

∥∥2
A = (x− x?)>A(x− x?) = x>Ax−2x>v+ x?>Ax?,

find the vector x that minimizes fA(x). Since A is symmetric and PD, this is a
convex function, and has a unique minimizer x = x?.

When minimizing fA, each iteration of the gradient descent method is as
follows: Start from the current estimate of x?, say xt , and move along the
direction of maximum rate of decrease of the function fA, i.e., against its
gradient, to the point that minimizes the function along this line. We can
explicitly compute the gradient of fA to be ∇ fA(x) = 2A(x−x?) = 2(Ax−v).
Thus, we have

xt+1 = xt −αt∇ fA(xt) = xt −2αt(Axt − v)

9.2. The Conjugate Gradient Method 181

for some αt . Define the residual rt
def
= v−Axt . Thus, we have

fA(xt+1) = fA(xt +2αtrt) = (xt − x?+2αtrt)
>A(xt − x?+2αtrt)

= (xt − x?)>A(xt − x?)+4αt(xt − x?)>Art +4α
2
t r>t Art .

= (xt − x?)>A(xt − x?)−4αtr>t rt +4α
2
t r>t Art

is a quadratic function in αt . We can analytically compute the αt that mini-
mizes fA and find that it is 1

2 ·
r>t rt

r>t Art
. Substituting this value of αt , and using

x?− xt = A−1rt , we obtain

‖xt+1− x?‖2
A = ‖xt − x?‖2

A−
(r>t rt)

2

r>t Art
= ‖xt − x?‖2

A

(
1− r>t rt

r>t Art
· r>t rt

r>t A−1rt

)
.

Now we relate the rate of convergence to the optimal solution to the condition
number of A. Towards this, note that for any z, we have

z>Az≤ λ1z>z and z>A−1z≤ λ
−1
n z>z,

where λ1 and λn are the smallest and the largest eigenvalues of A respectively.
Thus,

‖xt+1− x?‖2
A ≤ (1−κ

−1)‖xt − x?‖2
A,

where κ
def
= κ(A) = λ1/λn is the condition number of A. Hence, assuming we

start with x0 = 0, we can find an xt such that ‖xt−x?‖A ≤ δ‖x?‖A in approxi-
mately κ log 1/δ iterations, with the cost of each iteration dominated by O(1)
multiplications of the matrix A with a given vector (and O(1) dot product
computations). Thus, this gradient descent-based method allows us to com-
pute a δ approximate solution to x? in time O((tA +n)κ log 1/δ).

9.2 The Conjugate Gradient Method

Observe that at any step t of the gradient descent method, we have xt+1 ∈
Span{xt ,Axt ,v}. Hence, for x0 = 0, it follows by induction that for any posi-
tive integer k,

xk ∈ Span{v,Av, . . . ,Akv}.

The running time of the gradient descent-based method is dominated by the
time required to compute a basis for this subspace. However, this vector xk

182 Solving Equations via the Conjugate Gradient Method

may not be a vector from this subspace that minimizes fA. On the other hand,
the essence of the Conjugate Gradient method is that it finds the vector in this
subspace that minimizes fA, in essentially the same amount of time required
by k iterations of the gradient descent-based method. We must address two
important questions about the Conjugate Gradient method: (1) Can the best
vector be computed efficiently? and (2) What is the approximation guarantee
achieved after k iterations? We show that the best vector can be found effi-
ciently, and prove, using the polynomial approximations to xk from Section 3,
that the Conjugate Gradient method achieves a quadratic improvement over
the gradient descent-based method in terms of its dependence on the condi-
tion number of A.

Finding the best vector efficiently. Let {v0, . . . ,vk} be a basis for
K def

= Span{v,Av, . . . ,Akv} (called the Krylov subspace of order k). Hence,
any vector in this subspace can be written as ∑

k
i=0 αivi. Our objective then

becomes

‖x?−∑
i

αivi‖2
A = (∑

i
αivi)

>A(∑
i

αivi)−2(∑
i

αivi)
>v+

∥∥x?
∥∥2

A .

Solving this optimization problem for αi requires matrix inversion, the very
problem we set out to mitigate. The crucial observation is that if the vis are
A-orthogonal, i.e., v>i Av j = 0 for i 6= j, then all the cross-terms disappear.
Thus,

‖x?−∑
i

αivi‖2
A = ∑

i
(α2

i v>i Avi−2αiv>i v)+
∥∥x?
∥∥2

A ,

and, as in the gradient descent-based method, we can analytically compute
the set of values αi that minimize the objective to be given by αi =

v>i v
v>i Avi

.

Hence, if we can construct an A-orthogonal basis {v0, . . . ,vk} for K ef-
ficiently, we do at least as well as the gradient descent-based method. If we
start with an arbitrary set of vectors and try to A-orthogonalize them via the
Gram-Schmidt process (with inner products with respect to A), we need to
compute k2 inner products and, hence, for large k, it is not more efficient than
the gradient descent-based method. An efficient construction of such a ba-
sis is one of the key ideas here. We proceed iteratively, starting with v0 = v.
At the ith iteration, we compute Avi−1 and A-orthogonalize it with respect

9.2. The Conjugate Gradient Method 183

to v0, . . . ,vi−1, to obtain vi. It is trivial to see that the vectors v0, . . . ,vk are
A-orthogonal. Moreover, it is not difficult to see that for every i, we have

Span{v0, . . . ,vi}= Span{v,Av, . . . ,Aiv}.

Now, since Av j ∈ Span{v0, . . . ,v j+1} for every j, and A is symmetric, A-
orthonormality of the vectors implies v>i A(Av j) = v>j A(Avi) = 0 for all j such
that j+1 < i. This implies that we need to A-orthogonalize Avi only to vec-
tors vi and vi−1. Hence, the time required for constructing this basis is dom-
inated by O(k) multiplications of the matrix A with a given vector, and O(k)
dot-product computations. Hence, we can find the best vector in the Krylov
subspace efficiently enough.

Approximation guarantee. We now analyze the approximation guar-
antee achieved by this vector. Note that the Krylov subspace K =

Span{v,Av, . . . ,Akv} consists of exactly those vectors which can be expressed
as ∑

k
i=0 βiAiv = p(A)v, where p is a degree-k polynomial defined by the coef-

ficients βi. Let Σk denote the set of all degree-k polynomials. Since the output
vector xk is the vector in the subspace that achieves the best possible error
guarantee, we have

‖xk− x?‖2
A = inf

x∈K
‖x?− x‖2

A = inf
p∈Σk
‖x?− p(A)v‖2

A ≤ ‖x?‖2
A · inf

p∈Σk
‖I− p(A)A‖2.

Observe that the last expression can be written as

‖x?‖2
A · inf

q∈Σk+1,q(0)=1
‖q(A)‖2,

where the minimization is now over degree-(k+ 1) polynomials q that eval-
uate to 1 at 0. Since A is symmetric and, hence, diagonalizable, we know
that

‖q(A)‖2 = max
i
|q(λi)|2 ≤ sup

λ∈[λn,λ1]

|q(λ)|2,

where 0 < λn ≤ ·· · ≤ λ1 denote the eigenvalues of the matrix A. Hence, in
order to prove that an error guarantee of ‖xk−x?‖A≤ δ‖x?‖A is achieved after
k rounds, it suffices to show that there exists a polynomial of degree k+1 that
takes value 1 at 0, and whose magnitude is less than δ on the interval [λn,λ1].

As a first attempt, we consider the degree-s polynomial

q0(x)
def
=

(
1− 2x

(λ1 +λn)

)s

.

184 Solving Equations via the Conjugate Gradient Method

The maximum value attained by q0 over the interval [λn,λ1] is ((κ−1)/(κ+1))s .

Hence, d0
def
=
⌈

κ log 1/δ

⌉
suffices for this value to be less than δ . Or equiva-

lently, approximately κ log 1/δ rounds suffice for error guarantee ‖x−x?‖A ≤
δ‖x?‖A, recovering the guarantee provided by the gradient descent-based
method.

However, for a better guarantee, we can apply the polynomial approxima-
tion to xd0 developed in Section 3. Let z def

= 1− 2x/(λ1+λn). Hence, q0(x) = zs.

As x ranges over [0,λn +λ1], the variable z varies over [−1,1]. Theorem 3.3
implies that for d def

=
⌈√

2d0 log 2/δ

⌉
, the polynomial pd0,d(z) approximates

the polynomial zd0 up to an error of δ over [−1,1]. Hence, the polynomial
q1(x)

def
= pd0,d (z) approximates q0(x) up to δ for all x ∈ [0,λ1 +λn]. Combin-

ing this with the observations from the previous paragraph, q1(x) takes value
at most 2δ on the interval [λn,λ1], and at least 1− δ at 0. Thus, the polyno-
mial q1(x)/q1(0) is a polynomial of degree d = O(

√
κ log 1/δ) that takes value

1 at 0, and at most 2δ/(1−δ) = O(δ) on the interval [λn,λ1]. Or equivalently,
O(
√

κ log 1/δ) rounds suffice for an error guarantee ‖x− x?‖A ≤ O(δ)‖x?‖A,

which gives a quadratic improvement over the guarantee provided by the gra-
dient descent-based method. This completes the proof of Theorem 9.1.

Notes

The above proof of the guarantee of the Conjugate Gradient method is dif-
ferent from the traditional proof, which directly shows that the polynomial
Td(1− 2x/(λ1+λn)) for d = O(

√
κ log 1/δ) takes value 1 at 0 and is less than δ

on the interval [λn,λ1] (see, e.g., [66]). (Td(·) is the Chebyshev polynomial of
order d.)

Another intriguing question here concerns the Accelerated Gradient De-
scent method for optimizing convex functions, described by Nesterov [41,
42]. When applied to a quadratic function, Nesterov’s method reduces to
a Conjugate Gradient-type method. It would be interesting if the proof for
Conjugate Gradient presented in this section can be extended to (the more
general) Nesterov’s method.

10
Computing Eigenvalues via the Lanczos Method

In this section we present the Lanczos method for approximating the largest eigen-
value of a matrix and prove that it achieves a quadratic improvement over the number
of iterations required by the Power method for approximating the largest eigenvalue.

The Conjugate Gradient method is one of several methods that work with
the Krylov subspace, collectively called Krylov subspace methods. Another
Krylov subspace method of particular interest is the Lanczos method, which
is typically employed for approximating the eigenvalues and eigenvectors of a
symmetric matrix; see [53] for an extensive discussion. We present the Lanc-
zos method and show how the existence of good polynomial approximations
to xs allow us to easily improve upon the Power method. Concretely, we prove
the following theorem about the Lanczos method.

Theorem 10.1. Given a symmetric PSD matrix A, and a parameter δ > 0,
the Lanczos method after k iterations, for k = O(1/

√
δ · log n/δ) , outputs a

value µ ∈ [(1− δ)λ1(A),λ1(A)] with constant probability. The total number
of operations required is O((tA +n)k+ k2), where tA is the number of opera-
tions required to multiply A with a given vector.

185

186 Computing Eigenvalues via the Lanczos Method

The key thing is the dependence of 1/
√

δ on δ as opposed to that 1/δ as in
the Power method; a quadratic improvement. Such a result was proven by
Kuczyński and Woźniakowski [35]. Our proof is simpler and utilizes the

√
s

degree approximation for xs presented in Section 3.

10.1 Proof of Theorem 10.1

We start by recalling the following variational characterization of the largest
eigenvalue of a symmetric matrix.

Proposition 10.1. For a symmetric matrix A, its largest eigenvalue λ1(A)
is characterized as follows

λ1(A) = max
w6=0

w>Aw
w>w

.

For a vector w, the value w>Aw
w>w is called its Rayleigh quotient w.r.t. A.

Thus, to compute λ1(A), it suffices to find a non-zero vector which maximizes
the Rayleigh quotient. The Power method (see [66, Chapter 8]) tells us that
for a unit vector v chosen uniformly at random, with constant probability, the
vector Asv satisfies

(Asv)>A(Asv)
(Asv)>(Asv)

≥ (1−δ)λ1(A)

for s roughly 1/δ . The Lanczos method essentially finds the vector in the
Krylov subspaceK def

= Span{v,Av, . . . ,Akv} that maximizes the Rayleigh quo-
tient. It is sufficient to let k = s ≈ 1/δ as dictated by the Power method. We
prove below, again using the polynomial approximations to xs from Section 3,
that in order to find a vector with Rayleigh quotient at least (1−δ)λ1, it suf-
fices to choose k to be approximately 1/

√
δ . Finding a vector in the Krylov

subspace of order k that maximizes the Rayleigh quotient requires us to com-
pute a basis for this subspace followed by computing the largest eigenvalue
of a tridiagonal matrix of size k+1. The basis computation is identical to that
in the Conjugate Gradient method and computing the largest eigenvalue of
the tridiagonal matrix can be done in O(k2) time.

Formally, let λ1 ≥ ·· · ≥ λn be the eigenvalues of A, and let u1, . . . ,un

be the corresponding eigenvectors. Let δ > 0 be a specified error param-
eter. Let v be a unit vector and let {v0, . . . ,vk} be any orthonormal basis

10.1. Proof of Theorem 10.1 187

for the Krylov subspace constructed starting with the vector v, i.e., K =

Span{v,Av, . . . ,Akv}.1 Let V denote the n× (k + 1) matrix whose i-th col-
umn is vi. Thus, V>V = Ik+1 and VV> is the orthogonal projection onto K.
Let T def

= V>AV. The (k + 1)× (k + 1) matrix T denotes the operator A re-
stricted to K, expressed in the basis {vi}k

i=0. Thus, for every w ∈ K, we have
w =VV>w, and hence,

w>Aw = (w>VV>)A(VV>w) = w>V (V>AV)V>w = (w>V)T (V>w).
(10.1)

The above equality says that for any vector w ∈ K, the Rayleigh quotient of
the vector w with respect to A is the same as the Rayleigh quotient of the
vector V>w with respect to T. Thus, combining (10.1) with Proposition 10.1,
it follows that λ1(T)≤ λ1. In the other direction, we show that for a carefully
chosen v and k, λ1(T) is nearly as large as λ1. Thus, the Lanczos method
computes the largest eigenvalue of T, λ1(T) for such a choice of v and k, and
outputs it as an approximation to λ1. We proceed to describe how to choose
k and v.

Since K is a k + 1 dimensional subspace with the columns of V as an
orthonormal basis, as z ranges overK, the vector V>z ranges over Rk+1. Also,
for any vector z ∈ K, we know that z>V>TV z = z>Az. Combining these two
observations, we obtain the following:

λ1(T) = max
w∈Rk+1

w>Tw
w>w

= max
z∈K

z>V TV>z
z>z

= max
z∈K

z>Az
z>z

. (10.2)

Since every z ∈ K can be expressed as p(A)v for some p ∈ Σk, we obtain,
using (10.2), that,

λ1(T) = max
z∈K

z>Az
z>z

= max
p∈Σk

v>p(A)Ap(A)v
v>p(A)2v

.

Writing v = ∑
n
i=1 αiui, where ui are the eigenvectors of A, and hence also the

eigenvectors of p(A)2 and Ap(A)2, we get,

λ1(T) = max
p∈Σk

v>p(A)Ap(A)v
v>p(A)2v

= max
p∈Σk

∑i λi p(λi)
2α2

i

∑i p(λi)2α2
i

.

1Later on we show how to construct such a basis quickly, similar to the case of the Conju-
gate Gradient method.

188 Computing Eigenvalues via the Lanczos Method

Here λi is the eigenvalue of A corresponding to ui. Thus, for any p ∈ Σk, we
can bound how well λ1(T) relatively approximates λ1 as follows:

λ1−λ1(T)
λ1

≤ ∑
n
i=1(1− λi/λ1)p(λi)

2α2
i

∑
n
i=1 p(λi)2α2

i
.

Here we have used λ1 > 0. In the remainder of this section we assume that
λi > 0 for all i which follows from the assumption that A is PSD.

We choose v to be a uniformly random unit vector. A standard concentra-
tion bound then implies that with probability at least 1/2, we have α2

1 ≥ 1/9n.

Thus, assuming that α2
1 ≥ 1/9n, we split the sum in the numerator depending

on whether λ ≥ (1−δ)λ1, or otherwise.

∑
n
i=1(1− λi/λ1)p(λi)

2α2
i

∑
n
i=1 p(λi)2α2

i
≤ δ +

∑λi<(1−δ)λ1 p(λi)
2α2

i

p(λ1)2α2
1

≤ δ +9n sup
λ∈[0,(1−δ)λ1]

p(λ)2

p(λ1)2 .

Observe that if we choose the polynomial p(λ) = (λ/λ1)
s for s def

=⌈
1/2δ · log 9n/δ

⌉
in the above bounds, we can bound the relative error to be

λ1−λ1(T)
λ1

≤ δ +9n · sup
λ∈[0,(1−δ)λ1]

(
λ

λ1

)2s

= δ +9n · (1−δ)2s ≤ 2δ .

Hence, the Lanczos method after k = O(1/δ · log n/δ) iterations finds a vec-
tor with Rayleigh quotient at least (1−O(δ))λ1 with constant probability,
essentially matching the guarantee of the Power method.

However, we use the polynomial approximations ps,d to xs from Section 3
to show that the Lanczos method does better. We use the polynomial p(λ) =
ps,d (λ/λ1) for s =

⌈
1/2δ · log 9n/δ

⌉
as above, and d =

⌈√
2s · log 2n/δ

⌉
. In this

case, we know that for all λ such that |λ/λ1| ≤ 1, we have |p(λ)− (λ/λ1)
s | ≤

δ/n. Hence, p(λ1)≥ 1− δ/n, and

sup
λ∈[0,(1−δ)λ1]

p(λ)2 ≤ sup
λ∈[0,(1−δ)λ1]

(λ/λ1)
2s + δ/n = O(δ/n) ,

giving the following bound on the relative error

λ1−λ1(T)
λ1

≤ δ +9n · O(δ/n)

1− δ/n
≤ O(δ).

10.1. Proof of Theorem 10.1 189

Since the degree of this polynomial is d, we obtain that k = d =

O(1/
√

δ · log n/δ) iterations of Lanczos method suffice to find a vector with
Rayleigh quotient at least (1−O(δ))λ1.

Running time. It remains to analyze the time taken by this algorithm to
estimate λ1. Let tA denote the number of operations required to compute Au,
given a vector u. We first describe how to quickly compute an orthonormal
basis forK. The procedure is essentially the same as the one used in the Con-
jugate Gradient method. We iteratively compute Avi, orthogonalize it with
respect to vi, . . . ,v0, and scale it to norm 1 in order to obtain vi+1. As in the
Conjugate Gradient method, we have Av j ∈ Span{v0, . . . ,v j+1} for all j < k
and, hence, using the symmetry of A, we obtain v>j (Avi) = v>i (Av j) = 0 for
j+1 < i. Thus, we need to orthogonalize Avi only with respect to vi and vi−1.

This also implies that T is tridiagonal. Hence, we can construct V and T us-
ing O((tA + n)k) operations. (Note the subtle difference with respect to the
Conjugate Gradient method – here, by using usual inner products instead of
A-inner products, we ensure that the basis vectors are orthonormal instead of
A-orthogonal.) The only remaining step is to compute the largest eigenvalue
of T, which can be found via an eigendecomposition of T. Since T is tridiago-
nal, this step can be upper bounded by O(k2) (see [52]). The eigenvector w of
T which achieves λ1(T) can be used to give a candidate for the largest eigen-
vector of A, i.e., the vector V w. This completes the proof of Theorem 10.1.

Notes

Theorem 10.1 can be easily generalized to the case when A is symmetric and
not necessarily PSD. Further, the Lanczos method can also be used to approx-
imate several large eigenvalues of A. The algorithm is essentially the same,
except that we choose a Krylov subspace of higher order k, and output the top
eigenvalues of the matrix T. Using techniques similar to the ones presented
above, we can achieve a similar speed-up when the largest eigenvalues of A
are well-separated. Such results were obtained by Kaniel [31] and Saad [56]
(see [57, Chapter 6] and the notes therein).

Finally, the Lanczos method can in fact be used more generally to ob-
tain a fast approximation to f (A)v for any function f , and any vector v. If

190 Computing Eigenvalues via the Lanczos Method

we work with the Krylov subspace {v,Av, . . . ,Akv}, it can be shown that for
any polynomial p ∈ Σk, we have V p(T)V>v = p(A)v. Hence, a natural ap-
proximation for f (A)v is V f (T)V>v. Moreover, using the method above, the
number of operations required is O((tA+n)k) plus those required to compute
f (·) on the (k+1)×(k+1) tridiagonal matrix T , which can usually be upper
bounded by O(k2) via diagonalization (see [52]). Letting I def

= [λn(A),λ1(A)],
the error in the approximation can be upper bounded by the uniform approx-
imation error achieved by the best degree k polynomial approximating f on
I; see [66, Chapter 19]. This method derives its power from the fact that in
order to compute a good approximation, just the existence of a good polyno-
mial that approximates f on I is sufficient, and we do not need to know the
coefficients of the polynomial.

11
Computing the Matrix Exponential

In this section we use the rational approximation for e−x from Section 7 to give a fast
algorithm to compute an approximation to exp(−A)v, given a symmetric PSD matrix
A and a vector v. When A is a symmetric and diagonally dominant (SDD) matrix, the
running time is near-linear in the number of non-zero entries in A, and depends only
logarithmically on the spectral norm of A.

We consider the problem of computing exp(−A)v for an n×n PSD matrix
A and a vector v. Recall that

exp(−A) =
∞

∑
k=0

(−1)kAk

k!
.

Of particular interest is the special case

exp(−s(I−W̃)) = e−s
∑
k≥0

sk

k!
W̃ k,

where W̃ is the random walk matrix associated with a graph G = (V,E) de-
fined in Section 8, since this matrix corresponds to the transition matrix of
a continuous-time random walk of length s on G, also called the heat-kernel

191

192 Computing the Matrix Exponential

walk on G; see [17, 37]. In terms of the normalized Laplacian L = I−W̃ ,

the above matrix can be expressed as exp(−sL). Note that this walk can be
interpreted as the distribution of a discrete-time random walk after a Poisson-
distributed number of steps with mean s since exp(−sL) = e−s

∑k≥0
skW̃ k

k! .

These random walks are of importance in probability and algorithms, and
the ability to simulate them in time near-linear in the number of edges in the
graph results in near-linear time algorithms for problems including a version
of the Sparsest Cut problem (described in the notes at the end of Section 8)
with an additional balance constraint which requires that the two sides of the
cut be linear in size; see [49]. More generally, fast computation of exp(−A)v
plays a crucial role, via the matrix multiplicative weights update method, in
obtaining fast algorithms to solve semi-definite programs; see [6, 47, 5].

In this section we prove the following theorem which gives a near-
linear time algorithm that allows us to approximate the matrix exponential
exp(−sL)v for a given s, a vector v, and the normalized Laplacian L for a reg-
ular graph. More generally, the algorithm allows us to approximate exp(−A)v
where A is any symmetric and diagonally dominant (SDD) matrix. Recall
that a matrix A is said to be SDD if it is symmetric and for all i we have
Aii ≥ ∑ j 6=i |Ai j|. The normalized Laplacian for a regular graph is SDD. As in
Section 8, the result can be generalized to irregular graphs in a straightfor-
ward manner; see the notes at the end of this section for details.

Theorem 11.1. There is an algorithm that, given an n× n SDD matrix A
with m non-zero entries, a vector v, and δ ∈ (0,1], computes a vector u such
that

∥∥exp(−A)v−u
∥∥≤ δ‖v‖ in time Õ((m+n) log(2+‖A‖)polylog 1/δ).

The most natural way to compute exp(−A)v is to approximate the matrix ex-
ponential using the Taylor series approximation for the exponential, or to use
the improved polynomial approximations constructed in Section 4. Indeed,
Theorem 4.1 can be used to compute a δ approximation to exp(−A)v in time
O
(
(tA +n)

√
‖A‖ log 1/δ

)
; similar to Theorem 8.1. However, Theorem 5.3

implies that no polynomial approximation can get rid of the dependence on√
‖A‖ in the running time above.

What about rational approximations to e−x proved in Section 6? In-
deed, we can use the rational approximation from Theorem 6.1 to obtain

193

‖exp(−A)−
(
Sd(A)

)−1 ‖ ≤ 2−Ω(d), where
(
Sd(A)

)−1 is the approximation
to exp(−A) defined by Sd(x) = ∑

d
k=0

xk

k! . For most applications, an error of
δ = 1/poly(n) suffices, so we can choose d = O(logn). How do we compute(
Sd(A)

)−1 v? Clearly, inverting Sd(A) is not a good idea since that would
be at least as inefficient as matrix inversion. The next natural idea is to fac-
tor Sd(x) = α0 ∏

d
i=1(x− βi) and then calculate (Sd(A))−1v = α0 ∏

d
i=1(A−

βiI)−1v. Since d is small, namely O(logn), the cost of computing (Sd(A))−1v
reduces to the cost of computing (A−βiI)−1u. Thus, it suffices to do a com-
putation of this form. The first problem is that βis could be complex, as
is indeed the case for the polynomial Sd as discussed in Section 5. How-
ever, since Sd has real coefficients, its complex roots appear as conjugates.
Hence, we can combine the factors corresponding to the conjugate pairs
and reduce the task to computing (A2− (βi + β̄i)A+ |βi|2I)−1u. The matrix
(A2− (βi+ β̄i)A+ |βi|2I) is easily seen to be PSD and we can try to apply the
Conjugate Gradient method to compute (A2−(βi+ β̄i)A+ |βi|2I)u. However,
the condition number of this matrix can be comparable to that of A, which
gives no significant advantage over

√
‖A‖.1

Similarly, the rational approximations to e−x constructed in Section 7 sug-
gest the vector pd((I + A/d)−1)v as an approximation to exp(−A)v, where pd

is the polynomial given by Theorem 7.1. Once again, for any PSD matrix A,
though the matrix (I + A/d) is PSD, the condition number of (I + A/d) could
be comparable to that of A. Hence for arbitrary PSD matrices, the rational
approximations to e−x seem insufficient for obtaining improved algorithms
for approximating the matrix exponential. Indeed, O

(
(tA +n)

√
‖A‖ log 1/δ

)
is the best result known for computing the matrix-exponential-vector product
for a general PSD matrix A; see [49].

The above approach of using rational approximations shows how to re-
duce the approximation of exp(−A)v to solving a small number of linear sys-
tems involving the matrix I+A/d, or equivalently, approximating (I+A/d)−1u
for a given vector u. For an important special class of matrices, we can exploit
the fact that there exist algorithms that are much faster than Conjugate Gradi-

1To see this, consider a matrix A with λ1(A)� d, and λn(A) = 1. It is known that |βi| ≤ d;
see [68]. Hence, for such a matrix A, the condition number of (A2− (βi + β̄i)A+ |βi|2I) is
Ω(λ 2

1 (A)/d2), which is approximately the square of the condition number of A for small d.

194 Computing the Matrix Exponential

ent and allow us to approximate (I + A/d)−1u, for a given u. In particular, for
an SDD matrix A, there are powerful near-linear-time SDD system solvers
whose guarantees are given by the following theorem (see [62, 34, 32]).

Theorem 11.2. Given an n× n SDD matrix B with m non-zero entries, a
vector v, and δ1 > 0, there is an algorithm that, in Õ(m log 1/δ1) time, com-
putes a vector u such that ‖u− B−1v‖B ≤ δ1‖B−1v‖B . Moreover, u = Zv
where Z depends on B and δ1, and is such that (1−δ1)B−1� Z� (1+δ1)B−1.

At the end of Section 7, we proved that the coefficients of pd from Theo-
rem 7.1 and are bounded by dO(d), and can be computed up to an accuracy
of 2−poly(d) in poly(d) time. We now show that, assuming that we know the
coefficients of pd exactly, we can compute pd((I + A/d)−1)v as an approxi-
mation to exp(−A)v in near-linear time using Theorem 11.2. The error in the
approximation due of the error in the coefficients of pd can be handled in a
term-by-term manner, and is ignored in this monograph.

Note that if A is SDD, so is (I + A/d). We repeatedly use the SDD solver
of Theorem 11.2 to approximate (I + A/d)−iv, for all i = 1, . . . ,d, and let Z
denote the linear operator such that the SDD solver returns the vector Ziu
as the approximation. Let B def

= (I + A/d)−1. From the guarantee on the SDD
solver from the theorem above, we know that−δ1B� Z−B� δ1B. Applying
the triangle inequality to the identity

Zi−Bi =
i−1

∑
j=0

Zi−1− j(Z−B)B j,

and using ‖B‖ ≤ 1, we obtain,
∥∥Zi−Bi

∥∥≤ δ1 · i(1+δ1)
i. Thus,∥∥pd(Z)− pd(B)

∥∥≤ dO(d) ·δ1(1+δ1)
d .

Hence, we can choose δ1 = δ · d−Θ(d) for the SDD solver in order for the
final approximation to have error at most δ . Since d = Θ(log 1/δ) suffices,
this results in an overall running time of Õ(m polylog1/δ), completing the
proof of Theorem 11.1.

Coming back to graphs, an important corollary of this theorem is that
exp(−sL)v, the distribution after an s-length continuous time random walk
on a regular graph with normalized Laplacian L starting with distribution v,
can be approximately computed in Õ(m logs) time.

195

Corollary 11.3. Let W̃ be the random walk matrix for a graph G with n
vertices and m edges . Then, for any positive integer s, and a unit vector
v, and δ ∈ (0, 1/2], there is an algorithm that computes a vector w such that∥∥∥exp(−s(I−W̃))v−w

∥∥∥≤ δ in O
(
(m+n) log(2+ s) ·polylog1/δ

)
arithmetic

operations.

One should contrast this corollary with an analogous result for simple random
walks from Section 8.1. In the latter case, we do not know how to improve
upon the

√
s term in the running time.

Notes

For irregular graphs, the walk matrix W̃ is not symmetric and, hence, the
normalized Laplacian L is not SDD. We can extend the results of this sec-
tion by working with the symmetric matrix I −D−1/2W̃D1/2 and observing
that exp(−s(I−W̃)) = D1/2 exp(−s(I−D−1/2W̃D1/2))D−1/2. Thus, to compute
exp(−s(I−W̃))v, it suffices to be able to compute exp(−s(I−D−1/2W̃D1/2))u,
which can be approximated using the results of this section.

Theorem 11.1 was first proved by Orecchia, Sachdeva, and Vishnoi
in [49]. However, instead of computing the coefficients of the polynomial pd

explicitly, the authors in [49] appealed to the Lanczos method which allows
one to achieve the error guarantee of the approximating polynomial without
explicit knowledge of the polynomial (briefly described in the notes at the
end of Section 10).

We can now also reconsider the problem of approximating W̃ sv con-
sidered in Section 8. One approach to an algorithm for this problem, of
improving the dependence of the running time on s beyond

√
s, would

be to use the rational approximation for xs given by Newman [45] (see
notes at the end of Section 6), implying that we can approximate W̃ sv as(

∑
d
i=0
(s+i−1

i

)
(I−W̃)i

)−1
v, for any random walk matrix W̃ , and vector v,

where d = O(log 1/δ) suffices for δ -approximation. However, it is not clear if
the required matrix-inverse-vector-product can be computed or approximated
quickly.

12
Matrix Inversion via Exponentiation

In this section we illustrate the power of approximation by transcendental functions.
We show that 1/x can be well approximated by a sparse sum of the form ∑i wie−tix. As
an immediate application we obtain that the problems of approximating the matrix
exponential and the matrix inverse are essentially equivalent.

We present a rather short and surprising result which reduces a compu-
tation of the form A−1v for a PSD A, to the computation of a small number
of terms of the form exp(−sA)v. One way to interpret this result is that the
linear system solvers deployed in the previous section are necessary. The
other way is to see this as a new approach to speed up computations beyond
the Conjugate Gradient method to compute A−1v for PSD matrices, a major
open problem in numerical linear algebra with implications far beyond. The
following theorem summarizes the main result of this section.

Theorem 12.1. Given ε,δ ∈ (0,1], there exist poly(log 1/εδ) numbers 0 <

w j, t j = O(poly(1/εδ)), such that for all symmetric matrices A satisfying

196

12.1. Approximating x−1 Using Exponentials 197

εI � A� I, we have

(1−δ)A−1 �∑
j

w je−t jA � (1+δ)A−1.

Moreover, the coefficients w j, t j in the above theorem can be computed effi-
ciently. Thus, the above theorem implies a reduction from approximate matrix
inversion (equivalent to approximately solving a linear system) to approxi-
mating the matrix exponential. Combined with the reduction from the last
section, this theorem proves that the two problems are essentially equivalent.

Since the above reduction only requires that the matrix A be positive-
definite, it immediately suggests an approach to approximating A−1v: Ap-
proximate e−t jAv for each j and return the vector ∑ j w je−t jAv as an approx-
imation for A−1v. Since the weights w j are O(poly(1/δε)), we lose only a
polynomial factor in the approximation error.

Finally, we emphasize that the approximation for A−1 by exponentials
given in the above theorem has poly(log(1/εδ)) terms as opposed to poly(1/εδ)

terms. This distinction is crucial: for applications it is important to be able to
compute a δ -approximation to A−1v with polylogarithmic time dependence
on both 1/δ and the condition number of A (1/ε in this case); see Theorem
11.2.

12.1 Approximating x−1 Using Exponentials

Theorem 12.1 is an immediate corollary of the following theorem which
shows than we can approximate x−1 with a sum of a small number of ex-
ponentials, where the approximation is valid for all x ∈ [ε,1].

Theorem 12.2. Given ε,δ ∈ (0,1], there exist poly(log 1/εδ) numbers 0 <

w j, t j = O(poly(1/εδ)), such that for all x ∈ [ε,1], we have

(1−δ)x−1 ≤∑
j

w je−t jx ≤ (1+δ)x−1.

Similar results have appeared in the works of Beylkin and Monzón [9, 10].
We present a proof that is shorter and simpler. The starting point of the proof
of Theorem 12.2 is the identity x−1 =

∫
∞

0 e−xt dt. The crux of the proof is to
discretize this integral to a sparse sum of exponentials. One approach is to

198 Matrix Inversion via Exponentiation

discretize an integral to a sum is via the trapezoidal rule; i.e., by approximat-
ing the area under the integral using trapezoids of small width, say h:∫ b

a
g(t)dt ≈ T [a,b],h

g
def
=

h
2
·

K−1

∑
j=0

(
g(a+ jh)+g(a+(j+1)h)

)
,

where K def
= (b−a)/h is an integer. Applying this rule to the above integral after

truncating it to a large enough interval [0,b], we obtain the approximation

x−1 ≈ h
2

b/h−1

∑
j=0

(
e−x jh + e−x(j+1)h

)
.

The error in truncating the integral is
∫

∞

b e−xt dt = x−1e−bx. For the truncation
error to be at most δ/x for all x ∈ [ε,1], we need b to be at least 1/ε · log 1/δ .

The discretization of the interval and, hence, the sparsity of the approximating
sum K, are determined by the choice of h. The error due to discretization is
given by ∣∣∣∣∣∣x−1− h

2 ∑
j

(
e−x jh + e−x(j+1)h

)∣∣∣∣∣∣ .1
We would like this discretization error to be at most δ/x for all x ∈ [ε,1].
In particular, for x = 1, this gives us the following constraint, which only
involves h and δ : ∣∣∣∣∣1− h

2
· 1+ e−h

1− e−h

∣∣∣∣∣≤ δ .

This implies an upper bound of O(
√

δ) on h, for small enough δ . Together,
these constraints imply that the sparsity K = b/h must be Ω(1/(ε

√
δ)). Thus,

controlling the truncation error and the discretization error under uniform dis-
cretization can only lead to a sum which uses poly(1/(εδ)) exponential terms
which, as mentioned earlier, is insufficient for applications. We now show
that under a clever (non-uniform) discretization of the above integral, we are
able to achieve the desired error using only poly(log(1/εδ)) exponentials.

The above argument suggests that we should select a discretization where
t increases much more rapidly with h, e.g., exponentially instead of linearly.

1To be precise, the error is given by
∣∣∣∫ b

0 e−xt dt− h
2 ∑

b/h−1
j=0

(
e−x jh + e−x(j+1)h

)∣∣∣ and, with
a little more care, the argument above carries through.

12.2. Bernoulli Numbers and the Euler-Maclaurin Formula 199

This can be achieved by substituting t = ey in the above integral to obtain the
identity

x−1 =
∫

∞

−∞

e−xey+y dy.

Let fx(y)
def
= e−xey+y. Observe that fx(y) = x−1 · f1(y+ lnx). Since we allow

the error to scale with x−1 as x varies over [ε,1], y needs to change only by
an additive log 1/ε to compensate for x. This suggests that only roughly 1/h ·
log 1/ε additional terms are needed above those required for x = 1 in order for
the approximation to hold for all x ∈ [ε,1], giving a logarithmic dependence
on 1/ε. We show that discretizing this integral using the trapezoidal rule, and
bounding the error using the Euler-Maclaurin formula, does indeed give us
the desired result.

12.2 Bernoulli Numbers and the Euler-Maclaurin Formula

The Bernoulli numbers, denoted by bi for any integer i ≥ 0, are a sequence
of rational numbers which, while discovered in an attempt to compute sums
of the form ∑

k
i≥0 i j, have deep connections to several areas of mathematics.2

They can be defined recursively: b0 = 1, and for all k ≥ 1,

k−1

∑
j=0

(
k
j

)
b j = 0.

Given the Bernoulli numbers, the Bernoulli polynomials are defined to be

Bk(y)
def
=

k

∑
j=0

(
k
j

)
b jyk− j.

Using properties of the Bernoulli polynomials, and a well-known connection
to the Riemann zeta function, we obtain the following bounds (see [21]).

Lemma 12.3. For any non-negative integer k, and for all y ∈ [0,1],

1
(2k)!

|B2k(y)| ≤
1

(2k)!
|b2k| ≤

4
(2π)2k .

2The story goes that when Charles Babbage designed the Analytical Engine in the 19th
century, one of the most important tasks he hoped the Engine would perform was the calcula-
tion of Bernoulli numbers.

200 Matrix Inversion via Exponentiation

One of the most significant connections in analysis involving the Bernoulli
numbers is the Euler-Maclaurin formula which exactly describes the error in
approximating an integral by the trapezoidal rule. For a function g(y), let its
kth derivative be denoted by g(k)(y) def

= dk

dyk g(y).

Lemma 12.4. Given a function g : R→ R, for any a < b, any h > 0, and
N ∈ N, we have,

∫ b

a
g(y)dy−T [a,b],h

g =h2N+1
∫ K

0

1
(2N)!

B2N(y− [y])g(2N)(a+ yh)dy

−
N

∑
j=1

1
(2 j)!

b2 jh2 j
(

g(2 j−1)(b)−g(2 j−1)(a)
)
,

(12.1)

where K def
= b−a

h is an integer, and [·] denotes the integral part.

Note that it is really a family of formulae, one for each choice of N, called
the order of the formula. The choice of N is influenced by how well behaved
the higher order derivatives of the function are. For example, if g(y) is a poly-
nomial, when 2N > degree(g), we obtain an exact expression for

∫ b
a g(y)dy

in terms of the values of the derivatives of g at a and b. Since the sparsity of
the approximation is Ω(1/h), for the sparsity to depend logarithmically on the
error parameter δ , we need to choose N to be roughly Ω(log 1/δ) so that the
first error term in (12.1) is comparable to δ .

The Proof

Proof. (of Theorem 12.2) We fix the step size h, approximate the integral∫ bh
−bh fx(y)dy using the trapezoidal rule (b is a positive integer), and bound

the approximation error using the Euler-Maclaurin formula. We let b go to ∞,
which allows us to approximate the integral over [−∞,∞] by an infinite sum
of exponentials. Finally, we truncate this sum to obtain our approximation.
Applying the order N Euler-Maclaurin formula to the integral

∫ bh
−bh fx(y)dy,

12.2. Bernoulli Numbers and the Euler-Maclaurin Formula 201

and using Lemma 12.3, we obtain,∣∣∣∣∣
∫ bh

−bh
fx(y)dy−T [−bh,bh],h

fx

∣∣∣∣∣≤ 4
(

h
2π

)2N ∫ bh

−bh

∣∣∣ f (2N)
x (y)

∣∣∣dy

+
N

∑
j=1

4
(

h
2π

)2 j(∣∣∣ f (2 j−1)
x (−bh)

∣∣∣+ ∣∣∣ f (2 j−1)
x (bh)

∣∣∣) . (12.2)

Now, the derivatives of the function fx(y) are well-behaved and easy to com-
pute. By direct computation, for any k, its kth derivative f (k)x (y) is of the form
fx(y)pk(−xey), where pk is a degree-k polynomial. Since the exponential
function grows faster than any polynomial, this implies that for any fixed
k and x, f (k)x (y) vanishes as y goes to ±∞. We let b go to ∞ and observe that
the discretized sum converges to h∑ j∈Z fx(jh), hence, (12.2) implies that∣∣∣∣∣∣

∫
∞

−∞

fx(y)dy−h ∑
j∈Z

fx(jh)

∣∣∣∣∣∣≤ 4
(

h
2π

)2N ∫ ∞

−∞

∣∣∣ f (2N)
x (y)

∣∣∣dy. (12.3)

Thus, all we need to show is that the function fx is smooth enough. There is an
easy recurrence between the coefficients of pk for various k, and it allows us
to crudely bound the sum of their absolute values by (k+1)k+1. This, in turn,
implies the bound

∫
∞

−∞

∣∣∣ f (2N)
x (y)

∣∣∣dy≤ x−1 ·Θ(N)4N (Both these bounds have
been proved in the lemmas at the end of this section). Thus, we can choose
h = Θ(1/N2) and N = Θ(log 1/δ) to obtain the following approximation for all
x > 0:∣∣∣∣∣∣x−1−h ∑

j∈Z
e jh · e−xe jh

∣∣∣∣∣∣=
∣∣∣∣∣∣
∫

∞

−∞

fx(y)dy−h ∑
j∈Z

fx(jh)

∣∣∣∣∣∣= O
(

δ · x−1
)
.

(12.4)

The final step is to truncate the above discretization. Since the function fx(y)
is non-decreasing for y < log 1/x, we can majorize the lower tail with an inte-
gral to obtain

h ∑
j<A

fx(jh)≤
∫ Ah

−∞

fx(t)dt = x−1
(

1− e−xeAh
)
.

Thus, for A =
⌊
−1/h · log 1/δ

⌋
, we obtain that the lower tail is O(δ · x−1).

Similarly, for the upper tail, using the fact that fx(y) is non-increasing

202 Matrix Inversion via Exponentiation

for y ≥ log 1
x , for B =

⌈
1/h · log(1/ε log 1/δ)

⌉
, we obtain that the upper tail

h∑ j>B fx(jh) is O(δ · x−1). Combining these tail bounds with (12.4), we ob-
tain ∣∣∣∣∣∣x−1−h

B

∑
j≥A

e jh · e−xe jh

∣∣∣∣∣∣= O
(

δ · x−1
)
,

which completes the proof. Moreover, the coefficients are easily seen to be
efficiently computable.

For completeness we include the proof of the following two lemmas about
the derivates of fx used in the proof above.

Lemma 12.5. For any non-negative integer k, f (k)x (s) =

fx(s)∑
k
j=0 ck, j(−xes) j, where ck, j are some non-negative integers satis-

fying ∑
k
j=0 ck, j ≤ (k+1)k+1.

Proof. We prove this lemma by induction on k. For k = 0, we have f (0)x (s) =
fx(s). Hence, f (0)x is of the required form, with c0,0 = 1, and ∑

0
j=0 c0, j = 1.

Hence, the claim holds for k = 0. Suppose the claim holds for k. Hence,
f (k)x (s) = fx(s)∑

k
j=0 ck, j(−xes) j, where ck, j are non-negative integers satisfy-

ing ∑
k
j=0 ck, j ≤ (k+1)k+1. We can compute f (k+1)

x (s) as follows,

f (k+1)
x (s) =

d
ds

 k

∑
j=0

ck, j(−xes) j fx(s)


=

k

∑
j=0

ck, j(j− xes +1)(−xes) j fx(s)

= fx(s)
k+1

∑
j=0

((j+1)ck, j + ck, j−1)(−xes) j,

where we define ck,k+1
def
= 0, and ck,−1

def
= 0. Thus, if we define

ck+1, j
def
= (j+1)ck, j + ck, j−1,

we get that ck+1, j ≥ 0, and that f (k+1)
x is of the required form. Moreover, we

12.2. Bernoulli Numbers and the Euler-Maclaurin Formula 203

get,

k+1

∑
j=0

ck+1, j ≤ (k+2)(k+1)k+1 +(k+1)k+1 = (k+3)(k+1)(k+1)k

≤ (k+2)2(k+1)k ≤ (k+2)k+2.

This proves the claim for k+1 and, hence, the fact follows by induction.

The next lemma uses the fact above to bound the L1 norm of f (k)x .

Lemma 12.6. For every non-negative integer k,∫
∞

−∞

∣∣∣ f (k)x (s)
∣∣∣ds≤ 2x−1 · ek(k+1)2k.

Proof. By Fact 12.5,

∫
∞

−∞

∣∣∣ f (k)x (s)
∣∣∣ds≤

∫
∞

−∞

∣∣∣∣∣∣
 k

∑
j=0

ck, j(−xes) j

∣∣∣∣∣∣e−xes+s ds

t=xes

= x−1 ·
∫

∞

0

∣∣∣∣∣∣
 k

∑
j=0

ck, j(−t) j

∣∣∣∣∣∣e−t dt

Fact 12.5
≤ x−1 · (k+1)k+1

(∫ 1

0
e−t dt +

∫
∞

1
tke−t dt

)
≤ x−1 · (k+1)k+1 · (1+ k!)≤ 2x−1 · ek(k+1)2k,

where the last inequality uses k+1≤ ek and 1+ k!≤ 2(k+1)k.

Notes

The result in this section implies that for any matrix A and a vector v, if we
have a fast algorithm for approximating e−tAv, for any t > 0, then we can ob-
tain a fast algorithm to approximate A−1v, or equivalently, to approximately
solve the linear system Ax = v. We believe this is a promising approach to-
wards constructing fast linear system solvers. In a recent paper, Chung and

204 Matrix Inversion via Exponentiation

Graham [18] give a linear system solver based on a similar approach. How-
ever, their notion of a δ -approximate solution is significantly weaker (additive
error in each coordinate), and their solver has a poly(1/δ) dependence on the
error parameter δ , making it unsuitable for several applications.

References

[1] S. Aaronson. The polynomial method in quantum and classical computing. In
Foundations of Computer Science, 2008. FOCS ’08. IEEE 49th Annual IEEE
Symposium on, pages 3–3, 2008.

[2] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions.
Dover, New York, fifth edition, 1964.

[3] N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and su-
perconcentrators. J. Comb. Theory, Ser. B, 38(1):73–88, 1985.

[4] J.-E. Andersson. Approximation of e−x by rational functions with concentrated
negative poles. Journal of Approximation Theory, 32(2):85 – 95, 1981.

[5] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(6):121–164, 2012.

[6] S. Arora and S. Kale. A combinatorial, primal-dual approach to semidefinite
programs. In STOC, pages 227–236, 2007.

[7] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower
bounds by polynomials. J. ACM, 48(4):778–797, July 2001.

[8] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection.
Journal of Computer and System Sciences, 50(2):191 – 202, 1995.

[9] G. Beylkin and L. Monzón. On approximation of functions by exponential
sums. Applied and Computational Harmonic Analysis, 19(1):17 – 48, 2005.

[10] G. Beylkin and L. Monzón. Approximation by exponential sums revisited.
Applied and Computational Harmonic Analysis, 28(2):131 – 149, 2010.

205

206 References

[11] É. Borel. Lecons sur les Fonctions de Variables Réelles et les Développements
en Séries de Polynomes. Gauthier-Villars, Paris (2nd edition, 1928), 1905.

[12] M. Bun and J. Thaler. Dual lower bounds for approximate degree and Markov-
Bernstein inequalities. In Automata, Languages, and Programming, volume
7965 of Lecture Notes in Computer Science, pages 303–314. Springer Berlin
Heidelberg, 2013.

[13] P. L. Chebyshev. Théorie des mécanismes connus sous le nom de parallélo-
grammes. Mém. Acad. Sci. Pétersb., 7:539–568, 1854.

[14] P. L. Chebyshev. Sur les questions de minima qui se rattachent à la représenta-
tion approximative des fonctions. Mém. Acad. Sci. Pétersb., 7:199–291, 1859.

[15] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. Prob-
lems Anal., pages 195–199, 1970.

[16] E. W. Cheney. Introduction to approximation theory. McGraw-Hill, New York,
1966.

[17] F. Chung. Spectral Graph Theory (CBMS Regional Conference Series in Math-
ematics, No. 92). American Mathematical Society, 1997.

[18] F. Chung and O. Simpson. Solving linear systems with boundary conditions
using heat kernel pagerank. In Algorithms and Models for the Web Graph,
volume 8305 of Lecture Notes in Computer Science, pages 203–219. Springer
International Publishing, 2013.

[19] W. J. Cody, G. Meinardus, and R. S. Varga. Chebyshev rational approxima-
tions to e−x in [0,∞) and applications to heat-conduction problems. Journal of
Approximation Theory, 2(1):50 – 65, 1969.

[20] A. A. Gonchar and E. A. Rakhmanov. On convergence of simultaneous Padé
approximants for systems of functions of Markov type. Proc. Steklov Inst.
Math., 157:31–50, 1983.

[21] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foun-
dation for Computer Science. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2nd edition, 1994.

[22] L. K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of com-
puting, STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM.

[23] N. J. A. Harvey, J. Nelson, and K. Onak. Sketching and streaming entropy via
approximation theory. In Foundations of Computer Science, 2008. FOCS ’08.
IEEE 49th Annual IEEE Symposium on, pages 489–498, Oct 2008.

References 207

[24] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for solving lin-
ear systems. Journal of Research of the National Bureau of Standards, 49:409–
436, December 1952.

[25] M. Hochbruck and C. Lubich. On Krylov subspace approximations to the ma-
trix exponential operator. SIAM J. Numer. Anal., 34(5):1911–1925, October
1997.

[26] R. Jain, Z. Ji, S. Upadhyay, and J. Watrous. QIP=PSPACE. J. ACM,
58(6):30:1–30:27, December 2011.

[27] R. Jain, S. Upadhyay, and J. Watrous. Two-message quantum interactive proofs
are in PSPACE. In Proceedings of the 2009 50th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’09, pages 534–543, 2009.

[28] R. Jain and J. Watrous. Parallel approximation of non-interactive zero-sum
quantum games. 2012 IEEE 27th Conference on Computational Complexity,
0:243–253, 2009.

[29] S. Kale. Efficient algorithms using the multiplicative weights update method.
Technical report, Princeton University, Department of Computer Science,
2007.

[30] N. N. Kalitkin and I. A. Panin. On the computation of the exponential integral.
Mathematical Models and Computer Simulations, 1(1):88–90, 2009.

[31] S. Kaniel. Estimates for some computational techniques in linear algebra.
Math. Comp., 20:369–378, 1966.

[32] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu. A simple, combinatorial
algorithm for solving SDD systems in nearly-linear time. In Proceedings of the
45th annual ACM symposium on Symposium on theory of computing, STOC
’13, pages 911–920. ACM, 2013.

[33] A. R. Klivans and R. Servedio. Learning DNF in time 2Õ(n1/3). In Proceedings
of the thirty-third annual ACM symposium on Theory of computing, pages 258–
265. ACM, 2001.

[34] I. Koutis, G. L. Miller, and R. Peng. A nearly- m logn time solver for SDD
linear systems. In Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS ’11, pages 590–598. IEEE Computer
Society, 2011.

[35] J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalues by the
power and Lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl.,
13(4):1094–1122, October 1992.

[36] C. Lanczos. Solution of systems of linear equations by minimized iterations.
J. Res. Natl. Bur. Stand, 49:33–53, 1952.

208 References

[37] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times.
American Mathematical Society, 2006.

[38] A. A. Markov. On a question by D.I. mendeleev. Zapiski Imperatorskoi
Akademii Nauk, 62:1–24, 1890.

[39] V. A. Markov. On functions deviating least from zero in a given interval. Izdat.
Imp. Akad. Nauk, St. Petersburg, pages 218–258, 1892.

[40] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized al-
gorithms and probabilistic analysis. Cambridge University Press, New York,
NY, USA, 2005.

[41] Y. Nesterov. A method of solving a convex programming problem with conver-
gence rate O(1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–
376, 1983.

[42] Y. Nesterov. Introductory lectures on convex optimization: A basic course,
volume 87. Springer, 2004.

[43] D. J. Newman. Rational approximation to |x|. Michigan Math. J., 11:11–14,
1964.

[44] D. J. Newman. Rational approximation to e−x. Journal of Approximation
Theory, 10(4):301 – 303, 1974.

[45] D. J. Newman. Approximation to xn by lower degree rational functions. Jour-
nal of Approximation Theory, 27(3):236 – 238, 1979.

[46] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polyno-
mials. Computational Complexity, 4(4):301–313, 1994.

[47] L. Orecchia. Fast Approximation Algorithms for Graph Partitioning using
Spectral and Semidefinite-Programming Techniques. PhD thesis, EECS De-
partment, University of California, Berkeley, May 2011.

[48] L. Orecchia, S. Sachdeva, and N. K. Vishnoi. Approximating the exponential,
the Lanczos method and an Õ(m)-time spectral algorithm for Balanced Sepa-
rator. CoRR, abs/1111.1491, 2011.

[49] L. Orecchia, S. Sachdeva, and N. K. Vishnoi. Approximating the exponential,
the Lanczos method and an Õ(m)-time spectral algorithm for Balanced Sepa-
rator. STOC ’12, pages 1141–1160, 2012.

[50] L. Orecchia, L. J. Schulman, U. V. Vazirani, and N. K. Vishnoi. On partitioning
graphs via single commodity flows. In STOC ’08: Proc. 40th Ann. ACM Symp.
Theory of Computing, pages 461–470, 2008.

References 209

[51] L. Orecchia and N. K. Vishnoi. Towards an SDP-based approach to spectral
methods: A nearly-linear-time algorithm for graph partitioning and decompo-
sition. In SODA’11: Proc. 22nd Ann. ACM-SIAM Symp. Discrete Algorithms,
pages 532–545, 2011.

[52] V. Y. Pan and Z. Q. Chen. The complexity of the matrix eigenproblem. In
STOC’99, pages 507–516, 1999.

[53] B. N. Parlett. The symmetric eigenvalue problem, volume 7. SIAM, 1980.

[54] T. J. Rivlin. An introduction to the approximation of functions. Blaisdell book
in numerical analysis and computer science. Blaisdell Pub. Co., 1969.

[55] W. Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New
York, third edition, 1976. International Series in Pure and Applied Mathemat-
ics.

[56] Y. Saad. On the rates of convergence of the Lanczos and the block-Lanczos
methods. SIAM Journal on Numerical Analysis, 17(5):pp. 687–706, 1980.

[57] Y. Saad. Numerical methods for large eigenvalue problems. Society for Indus-
trial and Applied Mathematics, 2011.

[58] Y. Saad and H. A. van der Vorst. Iterative solution of linear systems in the 20th
century. Journal of Computational and Applied Mathematics, 123(1-2):1–33,
2000. Numerical Analysis 2000. Vol. III: Linear Algebra.

[59] E. B. Saff, A. Schönhage, and R. S. Varga. Geometric convergence to e−z by
rational functions with real poles. Numerische Mathematik, 25:307–322, 1975.

[60] A. Schönhage. Zur rationalen Approximierbarkeit von e−x über [0,∞). Journal
of Approximation Theory, 7(4):395 – 398, 1973.

[61] A. Sherstov. Lower bounds in communication complexity and learning theory
via analytic methods. Technical report, University of Texas at Austin, 2009.

[62] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph par-
titioning, graph sparsification, and solving linear systems. In STOC, pages
81–90, New York, NY, USA, 2004. ACM.

[63] G. Szegö. Über eine Eigenschaft der Exponentialreihe. Sitzungsber. Berl. Math.
Ges., 23:50–64, 1924.

[64] G. Szegö. Orthogonal polynomials. American Mathematical Society Provi-
dence, 4th ed. edition, 1939.

[65] G. Valiant. Finding correlations in subquadratic time, with applications to
learning parities and juntas. In Foundations of Computer Science (FOCS),
2012 IEEE 53rd Annual Symposium on, pages 11–20. IEEE, 2012.

210 References

[66] N. K. Vishnoi. Lx = b. Foundations and Trends in Theoretical Computer
Science, 8(1-2):1–141, 2012.

[67] K. Weierstrass. Über die analytische Darstellbarkeit sogenannter willkür-
licher Functionen einer reellen veränderlichen. Sitzungsberichte der Königlich
Preußischen Akademie der Wissenschaften zu Berlin, 2:633–639, 1885.

[68] S. M. Zemyan. On the zeroes of the Nth partial sum of the exponential series.
The American Mathematical Monthly, 112(10):pp. 891–909, 2005.

	Introduction
	I APPROXIMATION THEORY
	Uniform Approximations
	Chebyshev Polynomials
	Approximating Monomials
	Approximating the Exponential
	Lower Bounds for Polynomial Approximations
	Approximating the Exponential using Rational Functions
	Approximating the Exponential using Rational Functions with Negative Poles

	II APPLICATIONS
	Simulating Random Walks
	Solving Equations via the Conjugate Gradient Method
	Computing Eigenvalues via the Lanczos Method
	Computing the Matrix Exponential
	Matrix Inversion via Exponentiation
	References

