CSC 2421H : Graphs, Matrices, and Optimization
Random Walk

Lecturer: Sushant Sachdeva

Lecture 4 : 10 1 2018

Scribe: Junwei Sun

HW: The proof of statement is left as exercise for the student

1 Remark from last class

If at step t, your distribution is given by p¢, then the next distribution psy1 is given by:

pi+1 = AD 'py,

where:
A weighted adjacency matrix
D: diagonal weighted degree matrix

The state transition can also be expressed as:

w(z,y)
pi+1(z) = * pe(y)
+1 y;(%@g D(y) )

2 Stationary State

Definition 2.1. If distribution © € RY is said to be stationary distribution for G if AD 'nr =7

Lemma 2.2. Any undirected graph has a stationary distribution

Proof. Given any undirected graph G, let

1
=——D1
"T1D1
This is the stationary distribution for G since
1 1
AD 1 = Al = D1 =
"T1TD1 1TD1 "

Claim: If G is connected, 7 is unique

Remark: Even if G is connected, it is not true that for any pg, p: = 7




Example:

The stationary state m = (%,%) but the random walk will alternate between Vertex 0 and Vertex 1

N[

1
2

3 Positive Semi-Definite(PSD)

Definition 3.1. A symmetric matriz M is positive semi-definite(psd) if V &, x ' Mx > 0

Theorem 3.2. the following statements are equivalent:
(1) M is psd

(2) All eigenvalues of M are non-negative

(8) There exist an matriz A such that M = AAT

Lemma 3.3. If M is psd, then for all matrices C, CT MC is psd
Proof. ¥ x, x'CTMCx = (Cx) ' M(Cx) > 0 since M is psd

Notation: M is psd & M > 0

Lemma 3.4. £ > 0 where L is the laplacian matriz of some graph
Remark: £ > 0 implies N = 0 since N = D~2£D "2

Lemma 3.5. L 2D < N < 2I < \(N),p; <2

HW: If A = B, then \;(A) > \(B)

4 Lazy random walk

4.1 Lazy random walk matrix

At each step, the lazy random walk will do the following

{with probability% stay at the current vertex

with probability% take a usual random step

Lazy Random Walk Transition Matrix W = £(I+ AD1)
We know that the normalized Laplacian(IN) can be expressed as:



N=D 2Dz
1 1
=D 2(D-A)D 2
—I-D zAD:
applied this result to the lazy walk transition matrix

1. 1
W= -1+-AD"!
5 T3

1 1 11 11
=-I+-D2D 2AD 2D 2
2 2
1 1

1 1
=-I+-D2(I-N)D" 2
1.1 _1
=1- §D2 ND™ 2
Thus,we can express the lazy random walk transition matrix as:

W:I—%D%ND*% (2)

4.2 Eigenpair for lazy random walk matrix

Lemma 4.1. If(v;,v;) is an eigenpair for N, i.e Ni; = vith; < (1 — %l/i7D%¢i) s an eigenpair
for W

Proof.

Because of lamma 4.1 and lemma 3.5, we can obtain the following corollary
corollary: 0< \;(W) <1
Warning: W is not symmetric. Thus, its eigenvector need not be orthogonal

5 Convergence of Lazy Random Walk

5.1 Finding an expression for p,

State transition from p; to pir1 in a lazy random is given by :

pt+1 = Wp,



When t = 0:
p1 = Wpy

We know that

n n
1 1
D 2pg = Zaz‘wz‘ & po = ZO@DEW

=1 i=1

Thus, we can express p; as:
n 1
p1=Wpy =Y a;(WD2yy) = Zaz 1—* 2y
i=1

Iterating the process above, we obtain:

Zaz 1_* l¢i

Claim: If G is connected < 19 > 0
Remark: the claim above implies the following:

w#1,0g1-%<1

5.2 Given ¢, finding step t such that p; is € closed to the stationary distribution

At arbitrary vertex u, we have the following:

1/ D1
1Py —1[n=1]P; - D1
" vi 1 1/ D1 (3)
2

We know that:

_ (D21) _ (D21)
ID:1|| V1TD1

1
multiplied both side with 1] D?, we get
(D)

[D21| (4)
_ (1;D1)
1"D1

1TD2¢ 1TD2



We can express Dfépo as following
1 n
D zpo=Y ot
i=1
multiply each side with wlT

¥ D 2po= 0y
This gives us:
1
(1TD?)D"2py
1"D1

o] =

because pg is a probability vector and sum up to 1, we have,
- V1'D1 )

Now, we can further simplify (3) as:

T T 1TD? 1,D1
1 pi— 1 r=a (1_7 ¢1—|—Za11—— WD — oo
= Zaz (1-29T1 D3y
Combining the result above, we have the following
T T - TH3 Vi T
|1upt - 1u7T| < Z; ‘alluD2wZ|(1 - 5)
1=
1%} n 1
< (1*§)TZ|%‘13D2¢1| (6)

=2
n n 1
> aP )y (1[D2y)?
=2 =2

Now let’s try to simplify the term inside the square root, starting with » ;" , ozf

n
1
Y ai<|ID2pyll3
i=2

<1lD "1, (7)

Now let’s simplify Z?ZQ(IID%%)Q
We shall start with finding an expression for D> 1,



Claim:
n

1 1
D:ly=) (14D%¢)¥;
i=1
Proof. Let’s express D%Iu with eigenvector and eigenvalue

Dily=Y ity

i=1
1
Wi D21, = §

1 1
(¢ D?1y) "= 1.D2y);

1
D2 1,3= (D?1,)" (D*1y) (8)

=B O By
i=1 j=1

With the results above, (6) can be further simplified as following:

1 1
1] pe — 10| < (1 — 1) " \/| D~ E pol 31D Ly 1

1 _1 129}
= |ID1u[| - [[D™2pol|(1 - )"

— &(1 _ Q)T (9)
V' D, 2
S lgl:eVQt/z

Theorem 5.1. Given an undirected unweighted graph G and €, it suffices for the lazy random walk
to take t steps to get € closed to stationary distribution.
In other word, if

2 n
t>—1 —
> 0g()
then

|1Ipt - 1I7T| <e



Interpretation: On a graph with n vertex, if the lazy random walk want to be § closed to the
stationary distribution, then it would satisfy the following relation.

€ 2
T(=) = —log(—
(5) = - loa(~

)
—6()+T(0)

5.3 Application of the theorem on some examples

K, :complete graph with n vertices
Lazy random walk mixes in Q(logn) steps

Ly, =nl—117
0 =1
(L) ={ '

n o/w
Z/Q(NKn) =1

the theorem gives that the lazy random walk would mix in O(logn). In this case, the bound given
by the theorem is tight

R, :n-ring graph
The second eigenvalue of n-ring graph is given by:
1
v2(Nk,) = 0(5)

thus, the theorem gives that the lazy random walk mixes in O(n?logn) steps.
the lazy random walk on the n-ring graph can be defined as following:

T with probability%
Tit1 =< x; +1 with probabilityi
x; —1 with probability%

Elriyi|zi] =
1
Ela?,yfa) = 22 + 1

thus, the Lazy Random Walk is mixed in (n?) steps. In this case, the bound given by the theorem
is off up to logn
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