
CSC 2421H : Graphs, Matrices, and Optimization Lecture 4 : 10 1 2018

Random Walk
Lecturer: Sushant Sachdeva Scribe: Junwei Sun

HW: The proof of statement is left as exercise for the student

1 Remark from last class

If at step t, your distribution is given by pt, then the next distribution pt+1 is given by:

pt+1 = AD−1pt, (1)

where:
A: weighted adjacency matrix
D: diagonal weighted degree matrix

The state transition can also be expressed as:

pt+1(x) =
∑

y:(x,y)∈E

w(x, y)

D(y)
∗ pt(y)

2 Stationary State

Definition 2.1. If distribution π ∈ Rv is said to be stationary distribution for G if AD−1π = π

Lemma 2.2. Any undirected graph has a stationary distribution

Proof. Given any undirected graph G, let

π =
1

1>D1
D1

This is the stationary distribution for G since

AD−1π =
1

1>D1
A1 =

1

1>D1
D1 = π

Claim: If G is connected, π is unique

Remark: Even if G is connected, it is not true that for any p0, pt → π
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Example:

10

1
2

1
2

The stationary state π = (12 ,12) but the random walk will alternate between Vertex 0 and Vertex 1

3 Positive Semi-Definite(PSD)

Definition 3.1. A symmetric matrix M is positive semi-definite(psd) if ∀ x, x>Mx ≥ 0

Theorem 3.2. the following statements are equivalent:
(1) M is psd
(2) All eigenvalues of M are non-negative
(3) There exist an matrix A such that M = AA>

Lemma 3.3. If M is psd, then for all matrices C, C>MC is psd

Proof. ∀ x, x>C>MCx = (Cx)>M(Cx) ≥ 0 since M is psd

Notation: M is psd ⇔M � 0

Lemma 3.4. L � 0 where L is the laplacian matrix of some graph

Remark: L � 0 implies N � 0 since N = D−
1
2LD−

1
2

Lemma 3.5. L 4 2D ⇔ N 4 2I ⇔ λi(N), νi ≤ 2

HW: If A � B, then λi(A) ≥ λi(B)

4 Lazy random walk

4.1 Lazy random walk matrix

At each step, the lazy random walk will do the following{
with probability1

2 stay at the current vertex

with probability1
2 take a usual random step

Lazy Random Walk Transition Matrix W = 1
2(I + AD−1)

We know that the normalized Laplacian(N) can be expressed as:
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N = D−
1
2LD−

1
2

= D−
1
2 (D−A)D−

1
2

= I−D−
1
2 AD−

1
2

applied this result to the lazy walk transition matrix

W =
1

2
I +

1

2
AD−1

=
1

2
I +

1

2
D

1
2 D−

1
2 AD−

1
2 D−

1
2

=
1

2
I +

1

2
D

1
2 (I−N)D−

1
2

= I− 1

2
D

1
2 ND−

1
2

Thus,we can express the lazy random walk transition matrix as:

W = I− 1

2
D

1
2 ND−

1
2 (2)

4.2 Eigenpair for lazy random walk matrix

Lemma 4.1. If(νi, ψi) is an eigenpair for N, i.e Nψi = νiψi ⇔ (1 − 1
2νi, D

1
2ψi) is an eigenpair

for W

Proof.

WD
1
2ψi = (I− 1

2
D

1
2 ND−

1
2 )D

1
2ψi

= D
1
2ψi −

1

2
νiD

1
2ψi

Because of lamma 4.1 and lemma 3.5, we can obtain the following corollary
corollary: 0≤ λi(W) ≤ 1
Warning: W is not symmetric. Thus, its eigenvector need not be orthogonal

5 Convergence of Lazy Random Walk

5.1 Finding an expression for pt

State transition from pt to pt+1 in a lazy random is given by :

pt+1 = Wpt
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When t = 0:
p1 = Wp0

We know that

D−
1
2 p0 =

n∑
i=1

αiψi ⇔ p0 =

n∑
i=1

αiD
1
2ψi

Thus, we can express p1 as:

p1 = Wp0 =

n∑
i=1

αi(WD
1
2ψi) =

n∑
i=1

αi(1−
νi
2

)D
1
2ψi

Iterating the process above, we obtain:

pt =
n∑
i=1

αi(1−
νi
2

)>D
1
2ψi

Claim: If G is connected ⇔ ν2 > 0
Remark: the claim above implies the following:

∀i 6= 1, 0 ≤ 1− νi
2
< 1

5.2 Given ε, finding step t such that pt is ε closed to the stationary distribution

At arbitrary vertex u, we have the following:

1>uPt − 1>uπ= 1>uPt −
1>uD1

1>D1

=
n∑
i=1

αi(1−
νi
2

)>1>uD
1
2ψi −

1>uD1

1>D1

(3)

We know that:

ψ1 =
(D

1
2 1)

||D
1
2 1||

=
(D

1
2 1)√

1>D1

multiplied both side with 1>uD
1
2 , we get

1>uD
1
2ψ1= 1>uD

1
2

(D
1
2 1)

||D
1
2 1||

=
(1>uD1)√

1>D1

(4)

4



We can express D−
1
2 p0 as following

D−
1
2 p0=

n∑
i=1

αiψi

multiply each side with ψ>1

ψ>1 D−
1
2 p0= α1

This gives us:

α1 =
(1>D

1
2 )D−

1
2 p0√

1>D1

because p0 is a probability vector and sum up to 1, we have,

=
1√

1>D1
(5)

Now, we can further simplify (3) as:

1>upt − 1>uπ = α1(1−
ν1
2

)>ψ1 +
n∑
i=2

αi(1−
νi
2

)>1>uD
1
2ψi −

1>uD1

1>D1

=
n∑
i=2

αi(1−
νi
2

)>1>uD
1
2ψi

Combining the result above, we have the following

|1>upt − 1>uπ| ≤
n∑
i=2

|αi1>uD
1
2ψi|(1−

νi
2

)>

≤ (1− ν2
2

)>
n∑
i=2

|αi1>uD
1
2ψi|

≤ (1− ν2
2

)>

√√√√ n∑
i=2

α2
i

n∑
i=2

(1>uD
1
2ψi)2

(6)

Now let’s try to simplify the term inside the square root, starting with
∑n

i=2 α
2
i

n∑
i=2

α2
i≤ ||D

− 1
2 p0||22

≤ 1>v D
−1

1v

=
1

D(v)

(7)

Now let’s simplify
∑n

i=2(1
>
uD

1
2ψi)

2

We shall start with finding an expression for D
1
2 1u
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Claim:

D
1
2 1u =

n∑
i=1

(1>uD
1
2ψi)ψj

Proof. Let’s express D
1
2 1u with eigenvector and eigenvalue

D
1
2 1u=

n∑
i=1

βiψi

ψ>j D
1
2 1u = βj

(ψ>j D
1
2 1u)>= 1>uD

1
2ψj

||D
1
2 1u||22= (D

1
2 1u)>(D

1
2 1u)

= (

n∑
i=1

βiψi)
>(

n∑
j=1

βjψj)

=
n∑
i=1

β2i

=
n∑
i=1

(1>uD
1
2ψi)

2

(8)

With the results above, (6) can be further simplified as following:

|1>upt − 1>uπ| ≤ (1− ν2)>
√
||D−

1
2 p0||22||D

1
2 1u||22

= ||D
1
2 1u|| · ||D−

1
2 p0||(1−

ν2
2

)>

=

√
Du

Dv
(1− ν2

2
)>

≤
√
Du

Dv
e−ν2t/2

(9)

Theorem 5.1. Given an undirected unweighted graph G and ε, it suffices for the lazy random walk
to take t steps to get ε closed to stationary distribution.
In other word, if

t ≥ 2

ν2
log(

n

ε
)

then
|1>upt − 1>uπ| ≤ ε
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Interpretation: On a graph with n vertex, if the lazy random walk want to be ε
2 closed to the

stationary distribution, then it would satisfy the following relation.

T (
ε

2
) =

2

ν2
log(

2n

ε
)

= Θ(
1

ν2
) + T (ε)

5.3 Application of the theorem on some examples

Kn:complete graph with n vertices
Lazy random walk mixes in Ω(log n) steps

LKn = nI− 11>

λi(L) =

{
0 i = 1

n o/w

ν2(NKn) = 1

the theorem gives that the lazy random walk would mix in O(log n). In this case, the bound given
by the theorem is tight

Rn:n-ring graph
The second eigenvalue of n-ring graph is given by:

ν2(NKn) = θ(
1

n2
)

thus, the theorem gives that the lazy random walk mixes in O(n2 log n) steps.
the lazy random walk on the n-ring graph can be defined as following:

xi+1 =


xi with probability1

2

xi + 1 with probability1
4

xi − 1 with probability1
4

E[xi+1|xi] = xi

E[x2i+1|xi] = x2i +
1

2

thus, the Lazy Random Walk is mixed in Ω(n2) steps. In this case, the bound given by the theorem
is off up to logn

7


	Lecture 4 – Random Walk
	Remark from last class
	Stationary State
	Positive Semi-Definite(PSD)
	Lazy random walk
	Lazy random walk matrix
	Eigenpair for lazy random walk matrix

	Convergence of Lazy Random Walk
	Finding an expression for pt
	Given , finding step t such that pt is  closed to the stationary distribution
	Application of the theorem on some examples



