CSC 2421H : Graphs, Matrices, and Optimization	Lecture 4:1012018
Random Walk	
Lecturer: Sushant Sachdeva	

HW: The proof of statement is left as exercise for the student

1 Remark from last class

If at step t, your distribution is given by \mathbf{p}_{t}, then the next distribution \mathbf{p}_{t+1} is given by:

$$
\begin{equation*}
\mathbf{p}_{t+1}=\mathbf{A D}^{-1} \mathbf{p}_{t} \tag{1}
\end{equation*}
$$

where:
A: weighted adjacency matrix
D: diagonal weighted degree matrix
The state transition can also be expressed as:

$$
\mathbf{p}_{t+1}(x)=\sum_{y:(x, y) \in E} \frac{w(x, y)}{\mathbf{D}(y)} * \mathbf{p}_{t}(y)
$$

2 Stationary State

Definition 2.1. If distribution $\pi \in \mathbb{R}^{\mathbf{v}}$ is said to be stationary distribution for G if $\mathbf{A D}^{-1} \pi=\pi$
Lemma 2.2. Any undirected graph has a stationary distribution
Proof. Given any undirected graph G, let

$$
\pi=\frac{1}{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}} \mathbf{D} \mathbf{1}
$$

This is the stationary distribution for G since

$$
\mathbf{A D}^{-1} \pi=\frac{1}{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}} \mathbf{A} \mathbf{1}=\frac{1}{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}} \mathbf{D} \mathbf{1}=\pi
$$

Claim: If G is connected, π is unique
Remark: Even if G is connected, it is not true that for any $\mathbf{p}_{\mathbf{0}}, \mathbf{p}_{t} \rightarrow \pi$

The stationary state $\pi=\left(\frac{1}{2}, \frac{1}{2}\right)$ but the random walk will alternate between Vertex 0 and Vertex 1

3 Positive Semi-Definite(PSD)

Definition 3.1. A symmetric matrix \boldsymbol{M} is positive semi-definite(psd) if $\forall \boldsymbol{x}, \mathbf{x}^{\top} \mathbf{M} \mathbf{x} \geq 0$
Theorem 3.2. the following statements are equivalent:
(1) \boldsymbol{M} is $p s d$
(2) All eigenvalues of \boldsymbol{M} are non-negative
(3) There exist an matrix \boldsymbol{A} such that $\mathbf{M}=\mathbf{A} \mathbf{A}^{\top}$

Lemma 3.3. If \boldsymbol{M} is psd, then for all matrices $\boldsymbol{C}, \mathbf{C}^{\top} \boldsymbol{M C}$ is psd

Proof. $\forall \mathbf{x}, \mathbf{x}^{\top} \mathbf{C}^{\top} \mathbf{M C x}=(\mathbf{C x})^{\top} \mathbf{M}(\mathbf{C x}) \geq 0$ since \mathbf{M} is psd

Notation: \mathbf{M} is psd $\Leftrightarrow \mathbf{M} \succeq 0$
Lemma 3.4. $\mathcal{L} \succeq 0$ where \mathcal{L} is the laplacian matrix of some graph
Remark: $\mathcal{L} \succeq 0$ implies $\mathbf{N} \succeq 0$ since $\mathbf{N}=\mathbf{D}^{-\frac{1}{2}} \mathcal{L} \mathbf{D}^{-\frac{1}{2}}$
Lemma 3.5. $\mathcal{L} \preccurlyeq 2 \boldsymbol{D} \Leftrightarrow \boldsymbol{N} \preccurlyeq 2 \boldsymbol{I} \Leftrightarrow \lambda_{i}(\mathbf{N}), \nu_{i} \leq 2$
$\mathbf{H W}$: If $\mathbf{A} \succeq \mathbf{B}$, then $\lambda_{i}(\mathbf{A}) \geq \lambda_{i}(\mathbf{B})$

4 Lazy random walk

4.1 Lazy random walk matrix

At each step, the lazy random walk will do the following

$$
\begin{cases}\text { with probability } \frac{1}{2} & \text { stay at the current vertex } \\ \text { with probability } \frac{1}{2} & \text { take a usual random step }\end{cases}
$$

Lazy Random Walk Transition Matrix $\mathbf{W}=\frac{1}{2}\left(\mathbf{I}+\mathbf{A D}^{\mathbf{- 1}}\right)$
We know that the normalized Laplacian(N) can be expressed as:

$$
\begin{aligned}
\mathbf{N} & =\mathbf{D}^{-\frac{1}{2}} \mathcal{L} \mathbf{D}^{-\frac{1}{2}} \\
& =\mathbf{D}^{-\frac{1}{2}}(\mathbf{D}-\mathbf{A}) \mathbf{D}^{-\frac{1}{2}} \\
& =\mathbf{I}-\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}
\end{aligned}
$$

applied this result to the lazy walk transition matrix

$$
\begin{aligned}
\mathbf{W} & =\frac{1}{2} \mathbf{I}+\frac{1}{2} \mathbf{A} \mathbf{D}^{-1} \\
& =\frac{1}{2} \mathbf{I}+\frac{1}{2} \mathbf{D}^{\frac{1}{2}} \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \mathbf{D}^{-\frac{1}{2}} \\
& =\frac{1}{2} \mathbf{I}+\frac{1}{2} \mathbf{D}^{\frac{1}{2}(\mathbf{I}-\mathbf{N}) \mathbf{D}^{-\frac{1}{2}}} \\
& =\mathbf{I}-\frac{1}{2} \mathbf{D}^{\frac{1}{2}} \mathbf{N} \mathbf{D}^{-\frac{1}{2}}
\end{aligned}
$$

Thus, we can express the lazy random walk transition matrix as:

$$
\begin{equation*}
\mathbf{W}=\mathbf{I}-\frac{1}{2} \mathbf{D}^{\frac{1}{2}} \mathbf{N} \mathbf{D}^{-\frac{1}{2}} \tag{2}
\end{equation*}
$$

4.2 Eigenpair for lazy random walk matrix

Lemma 4.1. If $\left(\nu_{i}, \psi_{i}\right)$ is an eigenpair for \boldsymbol{N}, i.e $\boldsymbol{N} \psi_{i}=\nu_{i} \psi_{i} \Leftrightarrow\left(1-\frac{1}{2} \nu_{i}, D^{\frac{1}{2}} \psi_{i}\right)$ is an eigenpair for \boldsymbol{W}

Proof.

$$
\begin{aligned}
\mathbf{W D}^{\frac{1}{2}} \psi_{i} & =\left(\mathbf{I}-\frac{1}{2} \mathbf{D}^{\frac{1}{2}} \mathbf{N} \mathbf{D}^{-\frac{1}{2}}\right) \mathbf{D}^{\frac{1}{2}} \psi_{i} \\
& =\mathbf{D}^{\frac{1}{2}} \psi_{i}-\frac{1}{2} \nu_{\mathbf{i}} \mathbf{D}^{\frac{1}{2}} \psi_{i}
\end{aligned}
$$

Because of lamma 4.1 and lemma 3.5, we can obtain the following corollary corollary: $0 \leq \lambda_{i}(\mathbf{W}) \leq 1$
Warning: W is not symmetric. Thus, its eigenvector need not be orthogonal

5 Convergence of Lazy Random Walk

5.1 Finding an expression for p_{t}

State transition from \mathbf{p}_{t} to \mathbf{p}_{t+1} in a lazy random is given by :

$$
\mathbf{p}_{t+1}=\mathbf{W} \mathbf{p}_{t}
$$

When $\mathrm{t}=0$:

$$
\mathbf{p}_{1}=\mathbf{W} \mathbf{p}_{0}
$$

We know that

$$
\mathbf{D}^{-\frac{1}{2}} \mathbf{p}_{0}=\sum_{i=1}^{n} \alpha_{i} \psi_{i} \Leftrightarrow \mathbf{p}_{0}=\sum_{i=1}^{n} \alpha_{i} \mathbf{D}^{\frac{1}{2}} \psi_{i}
$$

Thus, we can express \mathbf{p}_{1} as:

$$
\mathbf{p}_{1}=\mathbf{W} \mathbf{p}_{0}=\sum_{i=1}^{n} \alpha_{i}\left(\mathbf{W D}^{\frac{1}{2}} \psi_{i}\right)=\sum_{i=1}^{n} \alpha_{i}\left(1-\frac{\nu_{i}}{2}\right) \mathbf{D}^{\frac{1}{2}} \psi_{i}
$$

Iterating the process above, we obtain:

$$
\mathbf{p}_{t}=\sum_{i=1}^{n} \alpha_{i}\left(1-\frac{\nu_{i}}{2}\right)^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{i}
$$

Claim: If G is connected $\Leftrightarrow \nu_{2}>0$
Remark: the claim above implies the following:

$$
\forall i \neq 1,0 \leq 1-\frac{\nu_{i}}{2}<1
$$

5.2 Given ϵ, finding step t such that p_{t} is ϵ closed to the stationary distribution

 At arbitrary vertex u, we have the following:$$
\begin{align*}
\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{P}_{\mathbf{t}}-\mathbf{1}_{\mathbf{u}}^{\top} \pi & =\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{P}_{\mathbf{t}}-\frac{\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D} \mathbf{1}}{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}} \\
& =\sum_{i=1}^{n} \alpha_{i}\left(1-\frac{\nu_{i}}{2}\right)^{\top} \mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{\mathbf{i}}-\frac{\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D} \mathbf{1}}{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}} \tag{3}
\end{align*}
$$

We know that:

$$
\psi_{1}=\frac{\left(\mathbf{D}^{\frac{1}{2}} \mathbf{1}\right)}{\left\|\mathbf{D}^{\frac{1}{2}} \mathbf{1}\right\|}=\frac{\left(\mathbf{D}^{\frac{1}{2}} \mathbf{1}\right)}{\sqrt{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}}}
$$

multiplied both side with $\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}}$, we get

$$
\begin{align*}
\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{\mathbf{1}} & =\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \frac{\left(\mathbf{D}^{\frac{1}{2}} \mathbf{1}\right)}{\left\|\mathbf{D}^{\frac{1}{2}} \mathbf{1}\right\|} \tag{4}\\
& =\frac{\left(\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D} \mathbf{1}\right)}{\sqrt{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}}}
\end{align*}
$$

We can express $\mathbf{D}^{-\frac{1}{2}} \mathbf{p}_{0}$ as following

$$
\mathbf{D}^{-\frac{1}{2}} \mathbf{p}_{0}=\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \alpha_{\mathbf{i}} \psi_{\mathbf{i}}
$$

multiply each side with ψ_{1}^{\top}

$$
\psi_{1}^{\top} \mathbf{D}^{-\frac{1}{2}} \mathbf{p}_{0}=\alpha_{\mathbf{1}}
$$

This gives us:

$$
\alpha_{1}=\frac{\left(\mathbf{1}^{\top} \mathbf{D}^{\frac{1}{2}}\right) \mathbf{D}^{-\frac{1}{2}} \mathbf{p}_{0}}{\sqrt{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}}}
$$

because \mathbf{p}_{0} is a probability vector and sum up to 1 , we have,

$$
\begin{equation*}
=\frac{1}{\sqrt{\mathbf{1}^{\top} \mathbf{D 1}}} \tag{5}
\end{equation*}
$$

Now, we can further simplify (3) as:

$$
\begin{aligned}
\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{p}_{\mathbf{t}}-\mathbf{1}_{\mathbf{u}}^{\top} \pi & =\alpha_{1}\left(1-\frac{\nu_{1}}{2}\right)^{\top} \psi_{1}+\sum_{i=2}^{n} \alpha_{i}\left(1-\frac{\nu_{i}}{2}\right)^{\top} \mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{i}-\frac{\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D} \mathbf{1}}{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}} \\
& =\sum_{i=2}^{n} \alpha_{i}\left(1-\frac{\nu_{i}}{2}\right)^{\top} \mathbf{1}_{u}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{i}
\end{aligned}
$$

Combining the result above, we have the following

$$
\begin{align*}
\left|\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{p}_{t}-\mathbf{1}_{\mathbf{u}}^{\top} \boldsymbol{\pi}\right| & \leq \sum_{i=2}^{n}\left|\alpha_{i} \mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{i}\right|\left(1-\frac{\nu_{i}}{2}\right)^{\top} \\
& \leq\left(1-\frac{\nu_{2}}{2}\right)^{\top} \sum_{i=2}^{n}\left|\alpha_{i} \mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{i}\right| \tag{6}\\
& \leq\left(1-\frac{\nu_{2}}{2}\right)^{\top} \sqrt{\sum_{i=2}^{n} \alpha_{i}^{2} \sum_{i=2}^{n}\left(\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{i}\right)^{2}}
\end{align*}
$$

Now let's try to simplify the term inside the square root, starting with $\sum_{i=2}^{n} \alpha_{i}^{2}$

$$
\begin{align*}
\sum_{i=2}^{n} \alpha_{i}^{2} & \leq\left\|\mathbf{D}^{-\frac{1}{2}} \mathbf{p}_{0}\right\|_{2}^{2} \\
& \leq \mathbf{1}_{\mathbf{v}}^{\top} \mathbf{D}^{-1} \mathbf{1}_{\mathbf{v}} \tag{7}\\
& =\frac{1}{D(v)}
\end{align*}
$$

Now let's simplify $\sum_{i=2}^{n}\left(1_{u}^{\top} D^{\frac{1}{2}} \psi_{i}\right)^{2}$
We shall start with finding an expression for $\mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}}$

Claim:

$$
\mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}}=\sum_{i=1}^{n}\left(\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{i}\right) \psi_{j}
$$

Proof. Let's express $\mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}}$ with eigenvector and eigenvalue

$$
\begin{align*}
\mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}} & =\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \beta_{\mathbf{i}} \psi_{\mathbf{i}} \\
\psi_{\mathbf{j}}^{\top} \mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}} & =\beta_{\mathbf{j}} \\
\left(\psi_{\mathbf{j}}^{\top} \mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}}\right)^{\top} & =\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{j} \\
\left\|\mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}}\right\|_{2}^{2} & =\left(\mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}}\right)^{\top}\left(\mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}}\right) \tag{8}\\
& =\left(\sum_{i=1}^{n} \beta_{i} \psi_{i}\right)^{\top}\left(\sum_{j=1}^{n} \beta_{j} \psi_{j}\right) \\
& =\sum_{i=1}^{n} \beta_{i}^{2} \\
& =\sum_{i=1}^{n}\left(\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{i}\right)^{2}
\end{align*}
$$

With the results above, (6) can be further simplified as following:

$$
\begin{align*}
\left|\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{p}_{\mathbf{t}}-\mathbf{1}_{\mathbf{u}}^{\top} \pi\right| & \leq\left(1-\nu_{2}\right)^{\top} \sqrt{\left\|\mathbf{D}^{-\frac{1}{2}} \mathbf{p}_{0}\right\|_{2}^{2}\left\|\mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}}\right\|_{2}^{2}} \\
& =\left\|\mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}}\right\| \cdot\left\|\mathbf{D}^{-\frac{1}{2}} \mathbf{p}_{0}\right\|\left(1-\frac{\nu_{2}}{2}\right)^{\top} \\
& =\sqrt{\frac{D_{u}}{D_{v}}}\left(1-\frac{\nu_{2}}{2}\right)^{\top} \tag{9}\\
& \leq \sqrt{\frac{D_{u}}{D_{v}}} e^{-\nu_{2} t / 2}
\end{align*}
$$

Theorem 5.1. Given an undirected unweighted graph G and ϵ, it suffices for the lazy random walk to take t steps to get ϵ closed to stationary distribution.
In other word, if

$$
t \geq \frac{2}{\nu_{2}} \log \left(\frac{n}{\epsilon}\right)
$$

then

$$
\left|\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{p}_{t}-\mathbf{1}_{\mathbf{u}}^{\top} \pi\right| \leq \epsilon
$$

Interpretation: On a graph with n vertex, if the lazy random walk want to be $\frac{\epsilon}{2}$ closed to the stationary distribution, then it would satisfy the following relation.

$$
\begin{aligned}
T\left(\frac{\epsilon}{2}\right) & =\frac{2}{\nu_{2}} \log \left(\frac{2 n}{\epsilon}\right) \\
& =\Theta\left(\frac{1}{\nu_{2}}\right)+T(\epsilon)
\end{aligned}
$$

5.3 Application of the theorem on some examples

K_{n} :complete graph with n vertices
Lazy random walk mixes in $\Omega(\log n)$ steps

$$
\begin{gathered}
\mathcal{L}_{K_{n}}=n \mathbf{I}-\mathbf{1 1}^{\top} \\
\lambda_{i}(L)= \begin{cases}0 & i=1 \\
n & o / w\end{cases} \\
\nu_{2}\left(N_{K_{n}}\right)=1
\end{gathered}
$$

the theorem gives that the lazy random walk would mix in $O(\log n)$. In this case, the bound given by the theorem is tight
R_{n} :n-ring graph
The second eigenvalue of n-ring graph is given by:

$$
\nu_{2}\left(N_{K_{n}}\right)=\theta\left(\frac{1}{n^{2}}\right)
$$

thus, the theorem gives that the lazy random walk mixes in $O\left(n^{2} \log n\right)$ steps. the lazy random walk on the n-ring graph can be defined as following:

$$
\left.\begin{array}{c}
x_{i+1}= \begin{cases}x_{i} & \text { with probability } \frac{1}{2} \\
x_{i}+1 & \text { with probability } \frac{1}{4} \\
x_{i}-1 & \text { with probability } \frac{1}{4}\end{cases} \\
E\left[x_{i+1} \mid x_{i}\right]=x_{i}
\end{array}\right\} \begin{aligned}
& E\left[x_{i+1}^{2} \mid x_{i}\right]=x_{i}^{2}+\frac{1}{2}
\end{aligned}
$$

thus, the Lazy Random Walk is mixed in $\Omega\left(n^{2}\right)$ steps. In this case, the bound given by the theorem is off up to logn

