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Graph Sparsifiers
Lecturer: Sushant Sachdeva Scribe: Kevan Hollbach

Recall the following theorem from last class.

Theorem 0.1. Let 0 < ε < 1, and let X1, . . . ,Xt ∈ Rn×n be symmetric independant random
matrices such that ∀i : 0 � Xi � R I. If µminI � E

∑
Xi � µmaxI then

Pr
[∑

Xi � (1 + ε)µmax

]
≤ n exp

(
−ε

2µmax

3R

)
and

Pr
[∑

Xi � (1− ε)µmin

]
≤ n exp

(
−ε

2µmin

2R

)
.

In particular, this holds for µmin = λmin(E
∑

Xi) and µmax = λmax(E
∑

Xi), the tightest bounds
on the spectrum of the expected sum.

1 Spectral Graph Sparsifiers

We introduce the notion of spectral sparsifiers, which are a generalization of spectral expanders.
Given a graph G = (V,E), a graph H = (V,E′) is an ε-spectral sparsifier of G if

(1− ε)LG � LH � (1 + ε)LG.

In this case we will write H ≈ε G and say that H spectrally approximates G. We will fudge (1− ε)
versus 1

1+ε in the definition of sparsifier, since for small ε, these quantities are close. Note that the
definition does not require that EH ⊆ EG, but in our constructions this will indeed be the case.

An immediate consequence of this definition is that if H ≈ε G, then ∀S ⊆ V ,

(1− ε)wG(EG(S, S)) ≤ wH(EH(S, S)) ≤ (1 + ε)wG(EG(S, S)),

as seen via the following quadratic form:

1
>
SLH1S =

∑
(u,v)∈EH

wH(u, v) (1S(u)− 1S(v))2 = wH(EH(S, S)).

What this says is that for any cut of the vertices V into two sets, the weight of the edges crossing
the cut is approximately the same in H and G.

Consider the randomized construction of an expander on an even number of vertices seen in the
previous lecture.

1



Expander1:

for i← 1, . . . , t = Θ( 1
ε2

log n)

Add an independent random matching of V to H, scaled by n−1
t

Scaling the edge weights of H by n−1
t ensures that vertices of H have degree exactly n− 1, and

that H is in expectation equal to the clique,

ELH = LKn .

Indeed, as seen last class, H is concentrated about its mean, and with high probability, H spectrally
approximates the clique. That is, with high probability,

LH ≈ε LKn .

The following is an alternative randomized construction of a spectral expander.

Expander2:

for i← 1, . . . , t = Θ( 1
ε2
n log n)

Add 1 independent random edge to H, with scaling n
2
(n−1)
t ≈ nε2

logn

The above algorithm yields an ε-spectral expander with high probability, and a similar proof
using matrix concentration bounds would show that taking t ∈ Ω( 1

ε2
n log n) suffices. Notice however

that H is unlikely to be a regular graph; its vertices will most likely have slightly different weighted
degrees. It is worth noting that in both of the above algorithms, an edge (u, v) may be “added”
to H more than once, depending on the random choices made. If an edge is added multiple times,
the copies are combined into a single edge with weight equal to their sum. It is therefore possible
that H is a weighted graph, even if the input graph G is “unweighted” (i.e. all edge weights are 1).

This second algorithm inspires our construction of spectral sparsifiers for graphs other than Kn.
What if we took the same approach, but we restricted ourselves to choosing random edges from the
edge set of some target graph G — would this then yield a sparsifier for G? We would of course
have to scale the sampled edges according to their weight in G so that we output G in expectation.
It turns out that this näıve approach would work, but in general we would have to take a very large
number of samples, t, to get a sparsifier with high probability. This would somewhat defeat the
purpose of getting a sparsifier, as in most applications we wish for a graph H that both spectrally
approximates G and has much fewer edges (i.e. H is actually sparser than G); ideally something
like |EH | ∈ O(n log n) even when |EG| ∈ Θ(n2). The following example illustrates the issue with
the näıve approach, and suggests how we might fix it.

Kn
Kn H1 H2

G H

≈ 1

wt ≈
nǫ

2

log n
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In the above example, G is the (unweighted) dumbbell graph, two cliques connected by a single
edge. Note that G is dense; |EG| ∈ Θ(n2). Any graph H ≈ε G for which EH ⊆ EG must have
an edge between the two special vertices, with weight approximately 1. This is because, as noted
before, any cut of H must have approximately the same weight as the corresponding cut in G. By
similar reasoning, we can see that the two subgraphs H1 and H2 of H should more-or-less behave
as ε-spectral expanders so as to mimic the structure of the corresponding subgraphs in G, each a
copy of Kn. If we wish for H to be sparse and still have H ≈ε G w.h.p., then in our randomized
construction we must sample the edges of Kn each with very low probability, and scale the sampled
edges’ weights at approximately nε2

logn , as in Expander2.
All this is to say that depending on the graph G, certain edges (e.g. the “special edge” connecting

the cliques) must be sampled with higher probability; intuitively this is because they are more
important to the structure of the graph. This suggests the idea of assigning “importance socres” to
edges, and sampling them with probability proporional to their importance. We will also have to
scale down the weights of the sampled edges by their importance scores so that, in expectation, we
output the original graph G. This approach is due to Spielman and Srivastava [1], journal version
[2]. For a detailed treatment of spectral sparsifiers, see [3]. (See also the versions on arXiv.)

2 Sparsifier Algorithm

Sparsifier(G, ε):

Construct a probabililty distribution {pe}e∈EG
over the edges of G,

edge probabilities proportional to “importance scores” (defined later)

for i← 1, . . . , t = Θ( 1
ε2
n log n)

Sample an independent edge e from {pe}
Scale it by w′e := we

t pe
Add it to H

We use the notation ei to mean the ith edge sampled, a random variable. Our first observation
is that the expected output of the algorithm is the original graph.

ELH = E

 t∑
i=1

w′eiLei

 = t · E[w′e1Le1 ] = t
∑
e∈EG

pew
′
eLe =

∑
e∈EG

weLe = LG,

where L(u,v) = (1u − 1v)(1u − 1v)>. This is simply a consequence of the definition of w′, and does
not depend on the settings we give to t or {pe} (as long as pe > 0, ∀e ∈ EG).

What remains to be shown is that with high probability,

(1− ε)LG � LH � (1 + ε)LG.

We will derive settings of t and {pe} that suffice, but in the meantime notice that we have a useful
tool for proving statements such as the above: matrix Chernoff bounds, of the form

(1− ε)µminI �
∑

Xi � (1 + ε)µmaxI.

Unfortunately however, it is not enough to apply Theorem 0.1 to the samples Xi = w′eiLei .
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First we must normalize our samples by the pseudoinverse of LG — if ψ1, . . . , ψn are orthonormal
eigenvectors of LG with corresponding eigenvalues λ1 ≤ · · · ≤ λn, then this is the matrix

L+
G :=

∑
i :λi>0

1

λi
ψiψ

>
i =

n∑
i=2

1

λi
ψiψ

>
i ,

if we assume that G is connected. Consider the matrix

L
+/2
G := (L+

G)
1
2 =

n∑
i=2

1√
λi
ψiψ

>
i

and, noting that it has the same kernel as LG and LH , symmetrically multiply the statement of
LH ≈ε LG by it:

(1− ε)LG �LH � (1 + ε)LG

⇐⇒ (1− ε)Π � L
+/2
G LHL

+/2
G � (1 + ε)Π,

where Π := L
+/2
G LGL

+/2
G =

∑n
i=2 ψiψ

>
i = I − ψ1ψ

>
1 = I − 1

n11
> is the matrix that performs

projection onto the subspace orthogonal to the kernel of LG.
Now, to get a statement of the form (1− ε)I �

∑
Xi � (1 + ε)I, we pad each of our t samples

by 1
t
1
n11

T , to fill in the kernel of Π.

Xi := w′eiL
+/2
G LeiL

+/2
G +

1

t

1

n
11

T

t∑
i=1

Xi = L
+/2
G LHL

+/2
G +

1

n
11
>

E
∑

Xi = I

Noting that the samples are PSD, we can apply Chernoff to
∑

Xi with µmin = µmax = 1 to get

Pr[(1− ε)I �
∑

Xi � (1 + ε)I] ≥ 1− 2n exp(
−ε2

3R
).

It remains to define the distribution {pe}, and to show that the samples are small in spectral
norm. Our bound on the size of the samples, R, will depend on t, and it turns out that taking
t = Θ( 1

ε2
n log n) will suffice for the above Chernoff bound to hold with high probability.

We introduce the notion of spectral norm of a matrix,

‖A‖ := max
x 6=0

‖Ax‖
‖x‖

,

and note that for symmetric A � 0,
‖A‖ = λmax(A).

With this notation we can write

R = max
i

max
ei

$←{pe}
‖Xi‖ = max

e1
$←{pe}

‖X1‖
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(where the second max is over all choices of randomness), to represent the tightest bound for which

∀i : 0 � Xi � R I.

That is,

R := max
e∈EG

∥∥∥∥w′eL+/2
G LeL

+/2
G +

1

t

1

n
11
>
∥∥∥∥

≥ max

{(
max
e∈EG

w′e

∥∥∥L+/2
G LeL

+/2
G

∥∥∥) , 1

t

∥∥∥∥ 1

n
11
>
∥∥∥∥
}

≥ max
e∈EG

we
t pe

∥∥∥L+/2
G LeL

+/2
G

∥∥∥
since 1 is in the kernel of L

+/2
G LeL

+/2
G , and therefore, ∀e ∈ EG,

pe ≥
we
tR

∥∥∥L+/2
G LeL

+/2
G

∥∥∥ .
Let us set

pe =
we
tR

∥∥∥L+/2
G LeL

+/2
G

∥∥∥ ,
and note that we wish to have

∑
e pe = 1. This is equivalent to

tR =
∑
e

weλmax

(
L
+/2
G LeL

+/2
G

)
=

∑
e=(u,v)

weλmax

(
L
+/2
G (1u − 1v)(1u − 1v)>L+/2

G

)
=
∑
e

we Tr
(
L
+/2
G (1u − 1v)(1u − 1v)>L+/2

G

)
(since the matrix is rank 1)

= Tr

(
L
+/2
G (

∑
e

weLe)L
+/2
G

)
= Tr

(
L
+/2
G LGL

+/2
G

)
= Tr (Π) = n− 1.

Therefore we define the distribution {pe} as, ∀e,

pe :=
1

n− 1
we

∥∥∥L+/2
G LeL

+/2
G

∥∥∥ .
Picking t := 6

ε2
(n− 1) log n gives us

Pr[(1− ε)I �
∑

Xi � (1 + ε)I] ≥ 1− 2

n
.

Thus with probability at least 1− 2
n ,

(1− ε)I � L
+/2
G LHL

+/2
G +

1

n
11
> � (1 + ε)I.
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Multiplying through symmetrically by L
1
2
G, we get

(1− ε)LG �LH � (1 + ε)LG.

That is, H is an ε-spectral sparsifier of G.

Theorem 2.1. For any G, and any 0 < ε < 1, the graph H produced by Sparsifier(G, ε) is an
ε-spectral sparsifier of G.

2.1 An aside about probabilities / leverage scores

The scalars we used to define the probabilities {pe} have other applications as well, and have a
special connection to electrical networks.

we

∥∥∥L+/2
G LeL

+/2
G

∥∥∥
= we Tr

(
L
+/2
G LeL

+/2
G

)
(since the matrix is rank 1)

= we Tr
(
L
+/2
G (1u − 1v)(1u − 1v)>L+/2

G

)
= we Tr

(
(1u − 1v)>L+

G(1u − 1v)
)

(since trace is cyclic)

= we(1u − 1v)>L+
G(1u − 1v)

= weReff(u, v),

where as seen in a previous lecture, L+
G(1u − 1v) is a vector of voltages and Reff(u, v) := (1u −

1v)
>L+

G(1u − 1v) is the potential difference between u and v, if we were to send 1 unit of current
from u to v.

The quantity weReff(e) is often called the leverage score of edge e:

Lev-score(e) := weReff(e).

2.2 Motivation for the next lecture

It is worth noting that a näıve, exact computation of L+
G would take timeO(n3), and thus calculating

the probabilities {pe} would take time O(n3 + m) = O(n3). This is often infeasible in practice,
and we will see next lecture that we can bypass this O(n3) computation by instead computing
approximate solutions to Lx = b.
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