
CSC 2421H : Graphs, Matrices, and Optimization Lecture 10 : 26 Nov. 2018

Approxinate Cholesky Factorization
Lecturer: Sushant Sachdeva Scribe: Maxim Goukhshtein

1 Notation

We introduce the following notation:

� S(k): Schur complement at k i.e., S(k) = S(k−1) + ckc
T
k where ck = 1√

S
(k−1)
π(k),π(k)

S
(k−1)
:,π(k) .

� Clk: Clique at k.

� (L)v: Laplacian of a star graph incident on v with all edges belonging to the graph whose

Laplacian is L. Therefore, we can write S(k) = S(k−1) +
(
S(k−1)

)
π(k)

+ Clk.

� For a matrix M , M = L−
1
2ML−

1
2 , where L is the Laplacian of the original graph.

� We use E|k−1[·] to denote the expectation conditioned on everything that happened in the
first k − 1 iterations.

2 Clique Sampling

In the previous lecture, the following clique sampling algorithm was introduced.

Algorithm 1 CliqueSample(G,v)

1: for every edge e = (v, u1) ∈ E do

2: Sample another edge (v, u2) with probability w(v,u2)
deg(v)

3: if u1 6= u2 then
4: Ye ← w(v,u1)w(v,u2)

w(v,u1)+w(v,u2)
L(u1,u2)

5: end if
6: end for
7: Return Ĉl =

∑
e Ye.

3 Approximate Cholesky Factorization Algorithm

Algorithm 2 is used for obtaining the approximate Cholesky factorization.
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Algorithm 2 ApproximateCholesky(G)

1: Replace each edge e with ρ parallel copies, each with weight w(e)
ρ .

2: Pick a random permutation π on V .
3: for k = 1 to n do
4: “Record column”: ck ← 1√

S
(k−1)
π(k),π(k)

S
(k−1)
:,π(k) .

5: “Eliminate and Sample”: Ĉlk ← CliqueSample
(
S(k−1), π (k)

)
,

6: Ŝ(k) ← Ŝ(k−1) + (Ŝ(k−1))π(k) + Ĉlk.
7: end for
8: Return [c1, c2, · · · , cn].

4 Proof of Algorithm Approximation Result

Our goal is to show that the returned approximate normalized Laplacian satisfies the target ap-
proximation L̂n ≈ 1

3
L, or equivalently

2

3
L 4 L̂n 4

4

3
L

⇔ −1

3
L 4 L̂n − L 4

1

3
L

⇔ −1

3
Π 4 L̂

n
− L 4

1

3
Π

⇔ ‖L̂
n
− L‖ ≤ 1

3
.

In order to show this result, we first introduce a number of useful lemmas.

Lemma 4.1. E|k−1
[
Ĉlk

]
= Clk

Proof.

E|k−1[Ĉlk] = E|k−1

[∑
e

Ye

]
=
∑
e

E|k−1[Ye]

=
∑
u1

∑
u2

w (v, u2)

deg(v)

w (v, u1)w (v, u2)

w (v, u1) + w (v, u2)
L(u1,u2)

=
∑
u1<u2

w (v, u1)w (v, u2)

deg(v)

w (v, u1) + w (v, u2)

w (v, u1) + w (v, u2)
L(u1,u2)

= Clk

Consider the difference of the resulting Laplacians in two consecutive iterations:

2



L̂(k) − L̂(k−1) = Ŝ(k) − Ŝ(k−1) + ckc
T
k

= −
(
Ŝ(k−1)

)
π(k)

+ Ĉlk + ckc
T
k

= −ckcTk − Clk + Ĉlk + ckc
T
k

= Ĉlk − Clk.

Therefore, it follows from Lemma 4.1, that E|k−1
[
L̂(k)

]
= L̂(k−1) (hence, {L̂(k)}k≥0 is a matrix

martingale).

The following Lemma concerning a distance property of the effective resistance will prove useful.

Lemma 4.2 (Triangle Inequality for Effective Resistance). ∀a, b, c ∈ V , Reff(a, b) ≤ Reff(a, c) +
Reff(c, b), or equivalently, ‖L̄a,b‖ ≤ ‖L̄a,c‖+ ‖L̄c,b‖.

Proof.

Reff(a, b) = (1a − 1b)T L† (1a − 1b)
= (1a − 1c + 1c − 1b)T L† (1a − 1c + 1c − 1b)
= (1a − 1c)T L† (1a − 1c) + (1c − 1b)T L† (1c − 1b) + 2 (1a − 1c)T L† (1c − 1b)
= Reff(a, c) + Reff(c, b) + 2 (1a − 1c)T L† (1c − 1b)
≤ Reff(a, c) + Reff(c, b),

where the inequality holds since (1a − 1c)T L† (1c − 1b) ≤ 0. This is true since L† (1c − 1b) corre-
sponds to the voltage drops in a resistor network where an external current of one unit is sent from
c to b, hence (1a − 1c)T L† (1c − 1b) is the voltage drop from a to c, that is v(a)− v(c). Since c is
the source in this network, it has the highest potential in the network, therefore v(c) ≥ v(a).

Lemma 4.3. Any edge e added in Algorithm 2 to Ŝk, satisfies ‖Ye‖ = ‖w(e)L̄e‖ = w(e)‖L−
1
2LeL

− 1
2 ‖ ≤

1
ρ .

Proof. We prove the lemma by induction. At k = 0, before “splitting” w(e)L̄e ≤ Π, therefore after

“splitting” ‖w(e)ρ L̄e‖ ≤ 1
ρ . Now, suppose that the lemma holds for step k−1. Suppose edge (u1, u2)

is added at step k, then

w (v, u1)w (v, u2)

w (v, u1) + w (v, u2)
‖L̄u1,u2‖ ≤

w (v, u1)w (v, u2)

w (v, u1) + w (v, u2)

(
‖L̄v,u1‖+ ‖L̄v,u2‖

)
=

w (v, u2)

w (v, u1) + w (v, u2)

(
w (v, u1) ‖L̄v,u1‖

)
+

w (v, u1)

w (v, u1) + w (v, u2)

(
w (v, u2) ‖L̄v,u2‖

)
≤ w (v, u2)

w (v, u1) + w (v, u2)

1

ρ
+

w (v, u1)

w (v, u1) + w (v, u2)

1

ρ
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=
1

ρ
,

where the first inequality follows from Lemma 4.2 and the second from the inductive hypothesis.

Finally, in order to prove the approximation result, we will make use of the following matrix
concentration result.

Theorem 4.4 (Matrix Freedman Inequality). Consider a matrix martingale {Yk ∈ Rn×n}k≥0
with Y0 = 0 (i.e., a random process satisfying E|k−1[Yk] = Yk−1). Define Xk = Yk − Yk−1 such that

λmax(Xk) ≤ R for all k. Further, define the “predictable quadratic variation” Wk =
∑k

i=1 E|i−1[X2
i ].

Then, ∀t, σ2 ≥ 0,

Pr
(
∃j : λmax(Yj) ≥ t and λmax(Wk) ≤ σ2

)
≤ n exp

{
−

t2

2

σ2 + tR
3

}
.

Proof of Algorithm Approximation Result. In the following we will consider each edge sampling
individually. We introduce a notation to indicate the call index to CliqueSample and sampled edge

index. For example, Y
(k)
e is the Laplacian of the edge e sampled at the kth call to CliqueSample.

We will use e− 1 to indicate the edge sampled before e (i.e., Y
(k)
e−1 is the Laplacian of the edge e− 1

sampled just before edge e, whose Laplacian is Y
(k)
e ).

We had previously shown that

L̂
(k)
− L̂

(k−1)
= Ĉlk − Clk

=
∑
e

Y e +
∑
e

E|k−1
[
Y e

]
=
∑
e

Y e + E|k−1
[
Y e

]
,

from which it follows that

L̂
(k)
− L̂

(0)
=

k∑
i=1

∑
e

Y
(i)
e + E|i−1

[
Y

(i)
e

]
, (1)

where the summation of the edges is over all the edges in the each ith call of CliqueSample (i.e., in
the jth call to CliqueSample we consider all the edges incident on vertex v in Algorithm 1).

Consider the random matrix Tk,e′ sequence defined as

Tk,e′ =

k−1∑
i=1

∑
e

Y
(i)
e + E|i−1

[
Y

(i)
e

]+

∑
e≤e′

Y (k)
e − E|k−1

[
Y

(k)
e

] , (2)

where the summation over edges in the kth call to CliqueSample is over all the edges up to and
including edge e′. To reiterate, the difference between equations 1 and 2 is that in equation 1 we
consider the summation over all the edges in each of the calls of CliqueSample, whereas in equation
2 we consider all the sampled edges in the first k − 1 calls and the sum of all the edges sampled
“so far” in the kth call to CliqueSample.
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To simplify notation, we let X
(k)
e = Y

(k)
e − E|i−1

[
Y

(k)
e

]
and write Tk,e′ =

∑
(i,e)≤(k,e′)X

(i)
e .

Furthermore, we use E|<(k,e′)[·] to denote the expectation conditioned on all edge samplings until

(and including) the sampling of edge e′ in the kth call to CliqueSample.

Note that ‖Tk,e′‖ ≤ 1
3 for all k and e′ implies ‖L̂

k
−L‖ ≤ 1

3 . Therefore, we will use Tk,e′ to prove
the algorithm approximation result. First note that Tk,e′ is a martingale of the form described in
Theorem 4.4, since trivially T0,0 = 0 and

E|<(k,e′)[Tk,e′ ] = E|<(k,e′)

 ∑
(i,e)≤(k,e′)

X(i)
e


= E|<(k,e′)

 ∑
(i,e)<(k,e′)

X(i)
e

− E|<(k,e′)

[
X

(k)
e′

]
=

∑
(i,e)<(k,e′)

X(i)
e + E|<(k,e′)

[
Y

(k)
e′ − E|k−1

[
Y

(k)
e′

]]
(∗)
=

∑
(i,e)<(k,e′)

X(i)
e + E|k−1

[
Y

(k)
e′

]
− E|k−1

[
Y

(k)
e′

]
=

∑
(i,e)<(k,e′)

X(i)
e

= Tk,e−1,

where E|<(k,e′)

[
Y

(k)
e′

]
= E|k−1

[
Y

(k)
e′

]
in (∗) follows from the fact that sampling of each edge within

a call to CliqueSample is independent of any other edge sampling in the same call.

Now, note that Tk,e′ − Tk,e′−1 = X
(k)
e′ , then

‖X(k)
e′ ‖ = ‖Y (k)

e′ − E|k−1
[
Y

(k)
e′

]
‖

≤ ‖Y (k)
e′ ‖

≤ 1

ρ
,

where the last inequality follows from Lemma 4.3. Therefore, when can bound the maximum

eigenvalue of Xk,e′ as per Theorem 4.4, λmax(X
(k)
e′ ) ≤ R = 1

ρ .

Next, we wish to bound Wk,e′ =
∑

(i,e)≤(k,e′) E|<(i,e)

[(
X

(k)
e′

)2]
,

Wk,e′ 4
n∑
i=1

∑
e

E|i−1
[(
X(k)
e

)2]

=

n∑
i=1

∑
e

E|i−1

(Y
(i)
e )

2

−

(
E|i−1

[
Y

(i)
e

])2
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4
n∑
i=1

∑
e

E|i−1
[
(Y

(i)
e )2

]

4
1

ρ

n∑
i=1

∑
e

E|i−1
[
Y

(i)
e

]

=
1

ρ

n∑
i=1

Cli.

We know construct a new martingale to bound Wk,e′ by applying Theorem 4.4 a second time.

Let Zj = 1
ρ

∑j
i=1Cli and

Aj =
(
Zj − E|j−1

[
Zj
])

+Aj−1

=
1

ρ

j∑
i=1

Cli −
1

ρ

j−1∑
i=1

Cli −
1

ρ
E|j−1

[
Clj

]
+Aj−1

=
1

ρ

(
Clj − E|j−1

[
Clj

])
+Aj−1.

Aj is a martingale of the type used in Theorem 4.4, since A0 = 0 and

E|j−1
[
Aj
]

=
1

ρ

(
E|j−1

[
Clj

]
− E|j−1

[
Clj

])
+ E|j−1

[
Aj−1

]
= Aj−1.

Since Clj 4
(
L
)
j
4 L̂j−1 4 4

3Π, we have 0 4 1
ρClj 4 4

3ρΠ and similarly 0 4 E|j−1
[
1
ρClj

]
4

4
3ρΠ. Therefore, − 4

3ρΠ 4 1
ρClj − E|j−1

[
1
ρClj

]
4 4

3ρΠ. Hence,

‖Aj −Aj−1‖ =
1

ρ
‖Clj − E|j−1

[
Clj

]
‖ ≤ 4

3ρ
,

so we choose λmax(Aj −Aj−1) ≤ 4
3ρ = R.

Now we find a value for the bound σ2,

n∑
j=1

E|j−1
[(
Aj −Aj−1

)2]
=

n∑
j=1

E|j−1

(1

ρ

(
Clj − E|j−1

[
Clj

]))2


4
n∑
j=1

E|j−1
[

4

3ρ2
Clj

]

4
4

3ρ2

n∑
j=1

E|j−1
(
L
)
j

=
4

3ρ2

n∑
j=1

1

n− j + 1
2L̂(j−1)

4
4

3ρ2
4

3

n∑
j=1

2

n− j + 1
Π
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4
64

9ρ2
log nΠ.

Hence, we can choose σ2 = 64
9ρ2

log n (and, as stated above, R = 4
3ρ) giving us according to Theorem

4.4 that λmax(Aj) ≥ t with probability ≤ n exp

{
−

t2

2

σ2+ tR
3

}
. We let n exp

{
−

t2

2

σ2+ tR
3

}
≤ 1

n3 ,

which implies that we need t2

σ2+ tR
3

≥ 8 log n. This in turn implies that we need to choose t ≥

max{
√
σ28 log n, R3 8 log n} = max{163ρ

√
2 log n, 329ρ log n}. By choosing t = 32

3ρ log n, we get that

λmax(Aj) ≤ t with high probability. Therefore, by induction λmax(An) ≤ 32
3ρ log n.

Furthermore,

An =
1

ρ

 n∑
j=1

Clj −
n∑
j=1

E|j−1
[
Clj

]
<

1

ρ

 n∑
j=1

Clj −
n∑
j=1

E|j−1
[(
L
)
j

]
=

1

ρ

 n∑
j=1

Clj −
n∑
j=1

1

n− j + 1
2L̂(j−1)


<

1

ρ

n∑
j=1

Clj −
1

ρ

4

3
4 log nΠ

= Zn −
16

3ρ
log nΠ,

Going back to the first application of Theorem 4.4 we find

Wk,e′ 4 Zn 4 An +
16

3ρ
log nΠ 4

16

ρ
log nΠ.

Therefore, to apply Theorem 4.4 on the original martingale we have (from before) R = 1
ρ and σ2 =

16
ρ log n. As before, we need to choose t ≥ max{

√
σ28 log n, R3 8 log n} = max{

√
2
ρ8 log n, 1

3ρ8 log n}.
By choosing t = 16

3ρ log n, λmax(Tk,e′) ≤ t. To get our result, we want to choose t ≤ 1
3 . And so

by choosing ρ = 16
9 log n, we get that ‖Tk,e′‖ ≤ 1

3 implying ‖L̂
k
−L‖ ≤ 1

3 . Using induction, we find

‖L̂
n
− L‖ ≤ 1

3 , that is 2
3L 4 L̂n 4 4

3L.
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