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Approximate Gaussian Elimination for Laplacians
Lecturer: Sushant Sachdeva Scribe: Yasaman Mahdaviyeh

1 Introduction

Recall sparsifiers from last lecture. Given graph G we wanted to construct graph H such that
G ≈ε H. We sampled edges of G with probability proportional to

pe = weReff (e) = we(1u − 1v)>L+
G(1u − 1v),

where e = (u, v). Computing L+
G naively takes O(n3) operation. In this lecture we see that we can

compute an approximation of the pseudoinverse of Laplacian much faster.

1.1 Laplacian Linear systems

We have the system Lx = b where b is demands and we want to compute x. This is a Laplacian
linear system. It would be nice if we had an algorithm, let’s call it LapInv(G, b), that computed
L+b = x. This would have a wide range of applications, especially in scientific computing. There
has been some work where x is approximated. Let x? = L+b be the exact solution, and let x be
output of the algorithm, then x? can be approximated in following sense∥∥x− x?

∥∥
L
≤ ε

∥∥x?∥∥
L
,

where ‖a‖L =
√
a>La. All of the solvers discussed in next section give solutions in this norm.

Note that this is only polynomially different from 2 norm because for all x such that x>1 = 0

λ2(L) ‖x‖ ≤ ‖x‖L ≤ λmax(L) ‖x‖

and
λ2(L)

λmax(L)
∈ O(n3).

1.2 Relevant Work

Here m is number of edges, and n is number of vertices as usual.
[Spielman-Teng ‘04] [ST04] showed that we can do this approximation in O(m logO(1) n log 1

ε ) .

[KMP’ 11] [KMP11] O(m log1+o(n) n log 1
ε )

[Cohen et al. ‘14] [CKM+14] O(m
√

log n log 1
ε )

We will discuss following result which is much simpler and doesn’t use graph theoretic constructions:
[Kyng-Sachdeva ‘16] [KS16] O(m log3 n log 1

ε )
First let’s review guassian elimination.
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1.3 Review of Gaussian Elimination

Suppose we want to solve this system of linear equations

16x1 − 4x2 − 8x3 − 4x4 = 16

−4x1 + 5x2 − x4 = −6

−8x1 + 9x3 − x4 = 19

−4x1 − x2 − x3 + 7x4 = 11.

One way of solving this system is to use the first equation to cancel out all x1s in the rest and
so on

16x1 − 4x2 − 8x3 − 4x4 = 16

+4x2 − 2x3 − 2x4 = −2

−2x2 + 5x3 − 3x4 = −11

2x2 − 3x3 + 6x4 = 15.

We could write the coefficients in a matrix and do the same thing. After one step, we can write
the original matrix as

16 −4 −8 −4
−4 5 0 −1
−8 0 9 −1
−4 −1 −1 7

 =


0
−1
4
−1
2
−1
4

[16 −4 −8 −4
]

+


16 −4 −8 −4
0 4 −2 −2
0 −2 5 −3
0 2 −3 6

 ,
or equivalently, first row could be moved to the first term

16 −4 −8 −4
−4 5 0 −1
−8 0 9 −1
−4 −1 −1 7

 =


1
−1
4
−1
2
−1
4

[16 −4 −8 −4
]

+


0 0 0 0
0 4 −2 −2
0 −2 5 −3
0 2 −3 6

 .
Note that since the original matrix was symmetric, first term can be written as outer product of a
rank 1 term with itself

1
−1
4
−1
2
−1
4

[16 −4 −8 −4
]

=


4
−1
−2
−1

[4 −1 −2 −1
]
.

2 Cholesky Factorization

Note that if we started with a matrix that was Laplacian (change 7 to 6), we would have the general
form [

d −b>
−b M

]
=

[√
d
−b√
d

][√
d
−b√
d

]>
+

[
0 0

0 M− bb>

d

]
.
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The submatrix M − bb>

d is schur(L1, {1}), where first vertex is eliminated. So as we saw in
midterm question 5, Laplacian can be written as Laplacian = symmetric rank 1 + schur comple-
ment(Laplacian).

L = v1v1
> + S(1) = v1v1

> + v2v2
> + S(2) = ...

where S(i) is schur complement of graph when first i vertices are eliminated. Note that v2 is zero
in its first coordinate, similarly vi has 0 in its first i− 1 coordinates. Also, the order in which we
eliminate vertices does not matter.

L = v1v1
> + v2v2

> + ...+ vnvn
>

Writing it in matrix form we get

L =
[
v1 v2 ... vn

]v1
>

v2
>

...

 = U>U,

where U is an upper triangular matrix.
This symmetric factorization is called Cholesky factorization. Here we showed it for Laplacians,
but in general it works for all positive semidefinite matrices. This is still expensive: O(n3). In fact,
it can be shown that for any Cholesky factorization (regardless of the order in which we eliminate
vertices) of O(1) degree expanders we need Ω(n3) steps. Why is Cholesky factorization useful ?
Because it’s easy to multiply by inverse of an upper triangular matrix

Lx = b⇔ U>Ux = b⇔ x = (U−1)(U>)−1b.

We can easily get x by forward substitution. The cost of this operation would be O( number of
non zero entries in U) = O(n2). We cannot compute the upper triangular matrix U cheaply, so we
will approximate it.

2.1 Introduction to Approximate Cholesky Factorization

Theorem 2.1 (Kyng-Sachdeva ‘16 [KS16]). In O(m log3 n) time, we can return upper triangular
matrix U such that U>U ≈1/3 L, that is 2

3L � U>U � 4
3L. Moreover, U has O(m log3 n) non

zero entries.

Here for simplicity we fixed ε = 1/3. There is a factor of 1
ε2

in the running time if we hadn’t
fixed ε. We don’t need high accuracy, we could always boost it. This will be presented in next
section.
If we had an algorithm for fast approximate Cholesky factorization, then we could get a fast
(approximate) Laplacian solver using following algorithm:

Corollary 2.2. Following algorithm, called iterative refinement or Richardson iteration, returns x
such that: ∥∥∥x− L+b

∥∥∥
L
≤ ε

∥∥∥L+b
∥∥∥
L

for t = O(log 1
ε ).
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Algorithm 1 Richardson Iteration

1: x(0) ← 0 . initial guess
2: Ã← (U>U)−1L
3: (U>U)−1b← b̃ . instead of solving Lx = b , multiply both sides by (U>U)−1, and try to

solve (U>U)−1Lx = (U>U)−1b
4: for i← 1 . . . t do
5: x(i) ← x(i−1) − (Ãx(i−1) − b̃) . Ã can be multiplied cheaply
6: end for

Note that U>U is not invertible, but has the same kernel as L (think pseudoinverse). For
simplicity, we will hide those details here. Cost of each iteration = multiplication by L (O(m)) +
multiplication by U−1 (O(m log3 n)) + multiplication by (U>)−1 O(m log3 n)

Proof of this corollary is left as an exercise, but here is a hint:
if A is symmetric and 2

3I � A � 4
3I, then we saw in midterm:

A−1 = I+ (I−A) + (I−A)2 + ...

We can get an approximation to A−1 if we only consider the first k terms of the sum. Specifically
consider k = 3 log 1

ε .

2.2 Graph Interpretation of Cholesky Factorization

Consider one step of Cholesky factorization, where we are removing vertex 1:

L =
1

d

[
d
−b

][
d
−b

]>
+ S(1)

Let’s think about what is happening to edges of the graph.
If (i, j) was such that i, j 6= 1, then (i, j) remains unchanged. Otherwise, we are removing all edges
incident to vertex 1 and adding a clique to neighbours of vertex 1 (denoted by N(1))

S(i) = L− 1

d

[
d
−b

][
d
−b

]>

S
(1)
i,j = −wi,j(in L) +

1

deg(1)
w(1, i)w(1, j).

Here is how we will approximate Cholesky Factorization: instead of adding a clique, we would add
an approximation of a clique ( we will sample a clique). The caveat is that we cannot have constant
error in each iteration.

2.3 Sparse Approximate Cholesky Factorization

Consider following algorithm for Cholesky factorization

4



Algorithm 2 Exact Cholesky Factorization

1: for k ← 1 . . . n do
2: ck ← 1√

dk

[
dk − bk

]
. Record kth column

3: Eliminate vertex k
4:

5: Add a clique on N(k).
6: end for

Now we can modify this to add an approximation of the clique, but to control the error, we
cannot eliminate the vertices in arbitrary order, so we will pick one uniformly random at each
iteration.

Algorithm 3 Sparse Approximate Cholesky Factorization

Replace each edge e by ρ parallel edges each with weight 1
ρwe . Preprocessing

for k ← . . . n do
Sample a vertex π(k) uniformly random from remaining vertices

Record ck = 1√
dπ(k)

[
dπ(k)
−bπ(k)

]
Add Sample Clique(N(k), k) to N(k) (where N(k) denotes set of neighbours of vertex k)

end for

The preprocessing step is necessary because we want samples to have small norm so that we
can use matrix concentration bounds. In the original graph norm of each sample is∥∥∥weL+/2LeL

+/2
∥∥∥ ≤ 1

So scaling weight of each edge by 1
ρ will scale down norm of each sample to at most 1

ρ . In next
section we will see how the clique is sampled.

2.4 Sampling a Clique

Algorithm 4 Sample Clique

procedure Sample Clique(N(k), k)
for every edge (k, a) ∈ N(k) do

Sample (k, b) ∈ N(k) with probability w(k,b)
w deg(k)

Add the edge (a, b) with weight w(k,a)w(k,b)
w(k,a)+w(k,b) if a 6= b

end for
return sampled edges
end procedure
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Proposition 2.3. E Laplacian of Sample Clique (N(k), k) = Laplacian of the weighted clique on
neighbours of k in original graph.

Proof. Let Ya be laplacian of an added edge we get after we remove (k, a),

EYa =
∑
b

w(k, b)

deg(k)

w(k, a)w(k, b)

w(k, a) + w(k, b)
La,b

∑
a

EYa =
∑

a,b,a<b

w(a, k) + w(b, k)

deg(k)

w(a, k)w(b, k)

w(k, a) + w(k, b)
La,b =

∑
a,b,a<b

w(k, a) + w(k, b)

deg(k)
La,b = Clk.

Note in the final term, we are adding Laplacians of all pairs of vertices adjacent to k, thus getting
a clique.

2.5 Expected Run Time

At each iteration, sampling vertex k costs deg(k). So expected cost at step k is

E
π(k)

deg(k) =
2m(k)

n− k + 1
≤ 2mρ

n− k + 1
,

where m(k) is number of edges at step k. The inequality holds because total number of edges is
bounded by mρ and at each step number of edges does not increase. Therefore, total expected cost
is ≤ 2mρ(1 + 1

2 + ...+ 1
n) ≤ 2mρ log n.
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