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Concentration Bounds
Lecturer: Sushant Sachdeva Scribe: Fengwei Sun

1 Scalar Chernoff Bound

Definition 1.1. Let X1, . . . , Xt be independent random variables such that

0 ≤ Xi ≤ R,E
∑
i

Xi =
∑
i

EXi = µ

Then for all 0 < ε < 1, we have

P [
∑
i

Xi ≥ (1 + ε)µ] ≤ e−
ε2µ
3R , P [

∑
i

Xi ≤ (1− ε)µ] ≤ e−
ε2µ
2R

Example: Suppose we conduct t independent tosses of a fair coin. Let Xi =

{
1 if heads

0 o/w
.

Then the number of heads in this trial is
∑t

i=1Xi, and E(# of heads) = E
∑t

i=1Xi = t
2 .

To obtain a good estimate of the probability that we see at least 600 heads out of 1000 tosses,
we can apply the Chernoff bound with the parameters ε = 0.2, R = 1, µ = 500, and get

P (at least 600 heads out of 1000 tosses) = P (

1000∑
i=1

Xi ≥ (1 + ε)500) ≤ e−
0.22∗500

3 = e−
20
3 ≈ e−7

Question: You can a coin with a bias in {12 +α, 12 −α}. How many tosses do you need to decide
which bias with probability of at least 1− δ?

Algorithm:

1. Toss the coin t times independently;

2. If there are at least t
2 heads, output 1

2 + α; otherwise output 1
2 − α.

We would like to bound P (failure) ≤ δ.
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Case 1: The coin has a bias 1
2 + α. Then P (failure) = P (

∑
Xi ≤ t

2).

To apply Chernoff, we find that R = 1, µ = t(12 + α). Since we want (1 − ε)µ = t
2 , we have

ε = 1− t
2µ = 1− 1

2α . Therefore,

P (
∑

Xi ≤
t

2
) = P (

∑
Xi ≤ (1− ε)µ) ≤ e−

ε2µ
2 ≤ δ

Since ε2µ ≈ Θ(tα2), we have

t ≥ Θ(1)

α2
log

1

δ

Case 2: The coin has a bias 1
2 − α. Then P (failure) = P (

∑
Xi ≥ t

2).

To apply Chernoff, we find that R = 1, µ = t(12 − α). Since we want (1 + ε)µ = t
2 , we have

ε = t
2µ − 1 = 1

2α − 1. Therefore,

P (
∑

Xi ≥
t

2
) = P (

∑
Xi ≥ (1 + ε)µ) ≤ e−

ε2µ
3 ≤ δ

Since ε2µ ≈ Θ(tα2), we have

t ≥ Θ(1)

α2
log

1

δ

Both cases indicate that the t is bounded by the logarithm of 1
δ , which means that t would be

relatively small even for very small δ.

2 Matrix Chernoff Bound

Definition 2.1. Let X1, . . . , Xt ∈ Rd×d be symmetric independent random variables such that

0 � Xi � RI, µminI � E
∑

Xi � µmaxI

Then we have

P [λmax(
∑

Xi) ≥ (1 + ε)µmax] ≤ de−
ε2µmax

3R ,

P [λmin(
∑

Xi) ≤ (1− ε)µmin] ≤ de−
ε2µmin

2R

Note:

1. The condition that 0 � Xi � RI is equivalent to ||Xi|| ≤ R, or λmax(Xi) ≤ R, where

||A|| = maxx 6=0
||Ax||
||x|| , and when A is symmetric, ||A|| = max{λmax,−λmin}.

2. µmin = λmin(E
∑
Xi), µmax = λmax(E

∑
Xi).
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Example: (Construction of random expander graphs) Suppose we would like to generate an
expander graph with n vertices (assuming n is even).

Define a matching as a graph where dv = 1 for all vertices v. Let H = 1
t (union of t independent

perfect matching). Notice that for all vertices u in the graph H, du = 1.
Using the matrix Chernoff bound, we can show that H is an expander.

The Laplacian of H is LH =
∑

i
1
tLi, where Li is the Laplacian of the ith matching.

Let Xi = 1
tLi. We know that Xi � 0 and λmax(Xi) = 1

tλmax(Li) = 2
t .

Also, if we look at a specific vertex u in each matching, it is connected to all other vertices with
equal probablity 1

n−1 . This indicates that ELH = EL1 = 1
n−1LKn .

Before we apply Chernoff bound on X ′is, one issue we notice is that λmin(Xi) = 0.
To fix that, we let Xi = 1

tLi + 1
t(n−1)11

>. Now we have E
∑
Xi = 1

n−1LKn + 1
n−111

> = n
n−1In,

and thus µmax = µmin = n
n−1 .

We can also show that, λmax(Xi) ≤ 2
t after the change of variable.

Let y = ŷ + c 1√
n

where ŷ>1 = 0. Then

y>Xiy = ŷ>(
1

t
Li)ŷ +

c2n

t(n− 1)
≤ (

2

t
)ŷ>ŷ +

n

(n− 1)t
c2 ≤ 2

t
(ŷ>ŷ + c2) ≤ 2

t
||y||2 =

2

t

Now we apply the Chernoff bound, and get the following:

P [λmax(
∑

Xi) ≥ (1 + ε)
n

n− 1
] ≤ ne

−ε2 n
n−1

3· 2t = ne−
ε2t
6

( n
n−1

)

If we pick t ≥ 12
ε2

log n, we have P [λmax(
∑
Xi) ≥ (1 + ε) n

n−1 ] ≤ n · 1
n2 = 1

n .

Similarly, we have P [λmin(
∑
Xi) ≤ (1− ε) n

n−1 ] ≤ 1
n .

Therefore, we can conclude that, with probability of at least 1− 2
n ,

λmax(
∑

Xi) ≤ (1 + ε)
n

n− 1
, λmin(

∑
Xi) ≥ (1− ε) n

n− 1
or

(1− ε) n

n− 1
I �

∑
Xi � (1 + ε)

n

n− 1

To see that H is a good approximation of a complete graph, let Π = I− 1
n11

> = 1
nLKn . Notice

that Π2 = Π.
Consider Π>(

∑
Xi)Π. We have

(1− ε) n

n− 1

1

n
LKn � Π>(

∑
Xi)Π � (1 + ε)

n

n− 1

1

n
LKn
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Since

Π>(
∑

Xi)Π = Π>(LH +
1

n− 1
11
>)(I − 1

n
11
>)

= Π>(LH +
1

n− 1
11
> − n

n(n− 1)
11
>) = Π>LH = LH

Therefore,

(1− ε) 1

n− 1
LKn � LH � (1 + ε)

1

n− 1
LKn

Now we get an ε-expander H with t · n2 = Θ(n logn
ε2

) edges, and LH ≈ε LKn .

In general, we would like to write the Chernoff bound as the following:

With probability of at least 1− 2de−
ε2µmin

2R , (1− ε)µminI �
∑
Xi � (1 + ε)µmaxI.

Definition 2.2. H = (V,E′) is an ε-spectral sparsifier of G = (V,E) if 1
1+εLG � LH � (1 + ε)LG,

denoted as LH ≈ε LG.
Equivalently, ∀x ∈ RV , 1

1+εx
>LGx ≤ x>LHx ≤ (1 + ε)x>LGx.

Note: Let x = 1S where S ⊂ V . Then x>LHx =
∑

(u,v)∈E w(u, v)(x(u)− x(v))2 = |E(S, S̄)|.

Theorem: For all G = (V,E), there exists H = (V,E′) such that LH ≈ε LG and |E′| ≤ Θ(n logn
ε2

)
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