
CSC 2421H : Graphs, Matrices, and Optimization Lecture 1 : 10 Sep 2018

Introduction
Lecturer: Sushant Sachdeva Scribe: Dmitry Paramonov

1 Introduction to the course

1.1 Goal

Graph algorithms have been a mainstay of algorithms since the foundation of computer science. The
notion of polynomial time efficiency (the class P) was defined in the context of the first algorithm
for matchings in general graphs. You must have seen some graph algorithms in your undergraduate
algorithms class.

When you think of algorithms on graphs, you probably think of BFS / DFS – or more broadly
combinatorial algorithms. However, there is another approach to designing algorithms on graphs
– one that’s based on matrices and continuous optimization. This approach was first taken for
graph partitioning by Cheeger’s inequality [AM85], which blossomed into the field of ‘Spectral
graph theory’. Another thread in this direction has been to incorporate numerical algorithms, and
continuous optimization methods, that has become very popular over the last one and half decades
since the work of Spielman and Teng [ST04].

The goal of this course will be to introduce you to the fundamentals of these fields, to make you
familiar with the tools and techniques used here, and to equip you to be able to follow the latest
research in this area.

1.2 Pre-requisites

Officially, the pre-requisites are undergraduate algorithms, linear algebra, probability, and some
basic vector calculus. However, most importantly of all, I expect mathematical maturity. This
course will be theoretical, and very mathematical in nature. We will prove several theorems, and
give guarantees for our algorithms.

This is an advanced graduate course, so I expect that there will be some mathematical back-
ground that you will not be aware of, I expect you to read to make up for that background.
Sometimes, I will point you to material that I expect you to read before coming to class. I expect
the material to be less than 2 hrs of reading per week. If you miss reading them, it might be hard
for you to follow or appreciate what I’m doing in class. At the same time, I will try to make my
lectures only refer to the background material in a black-box manner.

If you want to get a sense of the level of the material, take a look at the lecture notes for my
course CSC 2421H last year. The material will be substantially different but the level and the
flavor of the material covered will be similar.

1.3 Logistics

• Monday 3–5pm, short break @4pm ≤ 5 mins
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• Location: SS 2101

• Office hours: by appointment, feel free to catch me after lectures

• Email: sachdeva@cs.toronto.edu

• No class on Oct 8 (reading week)

1.4 Grading

• 20% scribe note : Scribing one lecture

• 30% grade : Take home mid-term.

• Post mid-term, you will be picking a paper(s) related to the course and reading it thoroughly.
You will be expected to deliver a presentation on the paper, and prepare lecture-notes based
on it.

• 50% grade : Paper presentation + making notes for the paper(s)

1.5 Outline of the Course

Here is a rough plan for the course. WARNING: This is a tentative plan, and subject to change.

1. Graphs, and basic matrices

• Eigenvalues

• Connections to random walks, conductance and mixing time

• Cheeger’s inequality

2. Graph Sparsification

• Matrix concentration bounds

• Effective-resistance / leverage scores

• Sparsification by leverage score sampling

3. Laplacian Solvers

• Gradient descent / Conjugate gradient

• Preconditioning

• A near-linear time solver

4. Optimization on graphs

• Max-flow as linear program

• Solving linear program approximately via continuous methods

2 Graphs and Basic Matrices

2.1 Introduction to Graphs

Any discussion of graphs must necessarily start with a definition of a graph.

Definition 2.1. A graph is a pair of sets G = (V,E). V is the set of vertices, and E is a set of
edges.
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For this course, the assumption will be an undirected graph. Thus, E is a set of unordered pairs
of vertices.

In common practice, there are many examples of graphs. Friendships could be modelled as
a graph, with people serving as vertices and edges representing whether they are friends or not.
The Internet can be modelled as a graph, wherein individual computers are vertices and edges are
network connections.

However, in this course, the focus will be on a more general case, with abstract vertices and
edges.

For this purpose, vertices will usually, unless otherwise stated, be assumed to be of the form
V = [n] = {1, . . . , n}. n is usually used to denote the number of vertices in a graph, while m = |E|
is used to denote the number of edges.

As a simple example of a graph, consider the ring graph. The edge set is of the form E ={
(i, i+ 1) : i ∈ [n− 1]

}
∪
{

(n, 1)
}

. In this case, the vertices are connected in a cycle, appearing as
a ring.

This can also be modified into the path graph. In this case, the edge set is just the first,
E =

{
(i, i+ 1) : i ∈ [n− 1]

}
.

Another notable example is a hypercube. The vertex set for a hypercube is V = {0, 1}k, the set
of k-length strings of 0’s and 1’s. The set of edges is then the set of all pairs of vertices (x, y) such
that x and y differ in exactly one coordinate. The hypercubes for k = 1, 2, 3 are sketched below.

Another useful graph is the n-star, a graph where E =
{

(n, i) : i ∈ [n− 1]
}

. Here, all vertices
are connected to one specific vertex, with no other edges in the graph.
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And a complete graph is a graph where all possible edges occur, discounting self-loops, such
that E =

{
(i, j) : i 6= j

}
. This is usually denoted Kn for n vertices.

2.2 Matrix Represenation of Graphs

For most purposes, algorithms to be run on graphs are run on computers. Thus, we wish for an
efficient way of representing it. Matrices can be efficiently stored on a computer, so representing a
graph as a matrix would be convenient.

The most straightforward way to represent a matrix on a computer is an adjacency matrix.
This represents which vertices are adjacent.

Definition 2.2. An adjacency matrix of a graph G = (V,E) is a matrix A ∈ RV×V such that

A (u, v) =

{
1, (u, v) ∈ E,
0, otherwise.

A 1 indicates that there is an edge between these vertices, and a 0 indicates that there isn’t.

This can be generalized for weighted graphs, graphs with an associated weight function w :

E → R by storing the weights.

A (u, v) =

{
w (u, v) , (u, v) ∈ E,
0, otherwise.

This representation can be used to quickly check connections between weights. It allows for the
testing of whether an edge is present in O (1) time.

However, adjacency matrices do not have any convenient mathematical properties. Thus, while
being a convenient storage format for graphs, adjacency matrices don’t actually allow for any
advanced matrix-based analyses.

Another similar matrix is the degree matrix. This uses the notion of the degree. The degree of
a vertex v, denoted by deg (v) is the number of edges such that v is an endpoint.

Definition 2.3. A degree matrix of a graph G = (V,E) is a diagonal matrix D ∈ RV×V such that

D (u, v) =

{
0, u 6= v,

deg (u) , u = v.

For this matrix, in the case of a weighted graph, the values are the weighted degree, the sum of
the weights of all edges ending in this vertex.

However, this matrix also doesn’t allow for convenient analysis. In fact, the original graph
cannot be reliably reconsructed from it.

Thus, another matrix is introduced, with more convenient properties.
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Definition 2.4. The Laplacian of a graph G = (V,E) is the unique symmetric matrix LG ∈ RV×V

such that
x>LGx =

∑
(u,v)∈E

(
x (u)− x (v)

)2
.

For a weighted graph, the quadratic terms are rescaled by the weight.

x>LGx =
∑

(u,v)∈E

w (u, v)
(
x (u)− x (v)

)2
.

However, this only defines the Laplacian implicitly, and we wish to find an explicit way of
computing it.

Thus, let us begin with a single edge. The graph Guv has some amount of vertices, but has only
one edge, between the vertices u and v. Let us attempt to compute the Laplacian for this, Luv.

x>Luvx =
(
x (u)− x (v)

)2
= x (u)2 + x (v)2 − 2x (u) x (v) .

x>Luvx =
∑

w,z∈V
Luv (w, z) x (w) x (z) .

Because we require the x (u)2 and x (v)2 coefficients to be 1, we see that the u, u entries and
v, v entries must be 1. And therefore, the u, v and v, u entries must sum to −2. But by symmetry,
we can thus see their exact values.

∴ Luv =

(
1 −1
−1 1

)
.

We can also rewrite it another way.

Let χu ∈ Rn.

χu (w) =

{
1, w = u,

0, otherwise.

x>Luvx =
(
x (u)− x (v)

)2
=
(

(χu − χv)> x
)2
.

We can thus expand the thing in the middle.

(χu − χv) (w) =


1, w = u,

−1, w = v,

0, otherwise.

x>Luvx =
(

(χu − χv)> x
)2

=
(

(χu − χv)> x
)> (

(χu − χv)> x
)
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= x> (χu − χv) (χu − χv)> x.

Luv = (χu − χv) (χu − χv)>

=

(
1
−1

)(
1 −1

)
=

(
1 −1
−1 1

)
.

Thus, in the single edge case, we can extract our Luv explicitly. Note that this only concerns
the submatrix involving u and v. For all other vertices, as they have no edges, all coefficients are 0.

We can also find a more general case of the Laplacian. Note that the quadratic form is necessarily
linear in the edges. Thus, we can rederive the full LG from that property.

x>LGx =
∑

(u,v)∈E

w (u, v)
(
x (u)− x (v)

)2
=

∑
(u,v)∈E

w (u, v)
(
x>Luvx

)

= x>

 ∑
(u,v)∈E

w (u, v) Luv

x.

LG =
∑

(u,v)∈E

w (u,w) Luv.

We also claim that the following is another definition of the Laplacian, but the proof is left as
an exercise to the reader.

LG = D−A.

2.3 The Spectral Theorem

Now that we can represent our graphs as matrices, the obvious question becomes as to what we
can do with this. Is there some information we can extract from it while it in matrix form which
we could not easily extract earlier?

It turns out that we can. But to demonstrate this, we first need to cover the Spectral Theorem.

Definition 2.5. For a given matrix M ∈ Rn×n, ψ ∈ Rn is an eigenvector of M with λ ∈ R as an
eigenvalue if Mψ = λψ, under the condition that ψ 6= 0.

Note that not all matrices have eigenvalues or eigenvectors. However, square symmetric matrices
have very interesting properties, which are given by the Spectral Theorem.

Theorem 2.6 (Spectral Theorem). If M is a symmetric n×n matrix, then there exist ψ1, . . . , ψn ∈
Rn which are mutually orthonormal and such that each is an eigenvector of M, with eigenvalues
λ1, . . . , λn, respectively.
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Furthermore,

M =
∑
i

λiψiψ
>
i .

Note that these eigenvalues are not necessarily distinct. You can have duplicates. But if you
count them, taking into account multiplicity, we see that there are n total.

Furthermore, our orthonormal eigenvectors form a basis of the space, so we can write any vector
as a linear combination of them.

As an example, consider a matrix U, with each column being a different ψi.

U =
(
ψ1 · · · ψn

)
.

Note that we thus get that U>U = In×n, the identity. And by properties of orthonormal
matrices, we get that UU> = In×n And we can thus rewrite M. Let Λ be the diagonal matrix
with λ1, . . . , λn on the diagonal. In that case, M gets a very convenient representation.

M = UΛU>.

We also know that λ is an eigenvalue of M if and only if det (tI−M) = 0 has λ as a solution.

2.4 Spectral Theorem on Graphs

Now, let us apply the above on graphs.
Let us begin with a single edge.

A =

(
0 1
1 0

)
.

D =

(
1 0
0 1

)
.

L =

(
1 −1
−1 1

)
.

We can now find eigenvectors for this.

L

(
1
1

)
=

(
0
0

)
.

ψ1 =
1√
2

(
1
1

)
.

λ1 = 0.

From this, you can try to construct another one, by taking an orthogonal vector.

ψ2 =
1√
2

(
1
−1

)
.
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λ2 = 2.

You thus have an eigen-decomposition. You can also find the latter one just by recalling the χ
form of Luv, from which you can see that Luv = (χu − χv) (χu − χv)>. Thus, by starting from the
final step of the Spectral Theorem, we see that (χu − χv) must be an eigenvector, which actually
gives us exactly ψ2.

We can also try to calculate the decomposition of the complete graph.

D =


n− 1 0 · · · 0

0 n− 1 · · · 0
...

...
. . .

...
0 0 · · · n− 1

 .

A =


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

 .

L = D−A

=


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1



= nI−


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


This latter matrix is usually denoted by J.

= nI− J

We can also express this using the all-ones vector, 1 (v) = 1∀v ∈ V .

= nI− 11>.

Now, we can see that 11> has 1 eigenvalue of n, as before, and n− 1 eigenvalues of 0, since this
is a matrix of rank 1.

However, note that if λ is an eigenvalue of M, then n− λ is an eigenvalue of nI−M, and vice
versa.

And thus, nI− 11> has n− 1 eigenvalues of n and 1 eigenvalue of 0.
Thus, we get the eigenvalues of Kn.
We also get some nice properties.
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Lemma 2.7. For any Laplacian, the eigenvalues are all non-negative.

Proof. To see this, consider ψi and λi.

Lψi = λiψi

ψ>i Lψi = λiψ
>
i ψi.

We know by orthonormality that the vector product must be non-negative.

ψ>i ψi ≥ 0.

But we also know by quadratic forms that the left side must also be non-negative.

ψ>i Lψi ≥ 0.

∴ λi ≥ 0.

2.5 Conductance

Lemma 2.8. Every Laplacian has an eigenvalue of 0.

Proof. To see this, consider LG1. We know that due to the quadratic form,

1>LG1 = 0.

Alternatively, we can consider the expanded form.

LG1 = (D−A) 1

= 0.

This holds due to the sum over the rows in A giving exactly the degree for that row.

But we also get some interesting properties about connectivity.

Lemma 2.9. If G is connected, and LGx = 0 with x 6= 0, then x must be of the form c1.

Proof.

LGx = 0.

x>LGx = 0.∑
(u,v)∈E

(
x (u)− x (v)

)2
= 0.

∴ ∀ (u, v) ∈ E, x (u)− x (v) = 0.

∀ (u, v) ∈ E, x (u) = x (v) .
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In general, this means that every connected component in your graph must have the same value,
with the entire graph getting the same value in the connected case.

This means that for a connected graph, the only 0-eigenvalued eigenvector is 1. Which means
that all other eigenvalues are non-zero.

Lemma 2.10. If G has k connected components, then LG has k eigenvectors with eigenvalue 0,
and all others having a greater eigenvalue.

This is left as an exercise to the reader.
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