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Lazy Random Walks & Expanders
Lecturer: Sushant Sachdeva Scribe: Sara Tang

1 Finding ν2 of the Dumbbell Graph

Definition 1.1. Define a dumbbell graph of size 2n to be two complete graphs Kn connected by
a single edge:

Figure 1: An example of a dumbbell graph.

It is not hard to see that Φ = Θ(1/n2), where |V | = 2n: simply cut along the edge connecting
the complete graphs. By Cheeger’s inequality, it follows that ν2 ≤ Θ(1/n2).

We wish to show that this is a tight bound, ie. ν2 = Ω(1/n2). Intuitively, this is true, because
we know from the main result of last week that the number of lazy random walk steps t it takes to
be close to the stationary distribution is directly proportional to 1/ν2.

Indeed, there is probability 1/n to get to the spectral vertex (the vertex connecting the two
complete graphs), and from the spectral vertex, there is probability 1/n chance to cross to the
other Kn. But let’s do this rigorously.

Lemma 1.2. Let G = (V,E), u, v ∈ V . Suppose there exists a path P (u, v) from u to v with
length 3, as demonstrated in Figure 2. (Note that (u, v) need not be an edge in G.) Let Lu,v be the
Laplacian of the (u, v)-line graph, and LP (u,v) be the Laplacian of the P (u, v)-path graph.
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Figure 2: P (u, v) is a path of length 3 via (u,w, z, v).

Then

(1u − 1v)(1u − 1v)> = Lu,v � 3LP (u,v)

Proof. By Cauchy-Schwarz,

((xu − xw) + (xw − xz) + (xz − xv))2 ≤ 3((xu − xw)2 + (xw − xz)2 + (xz − xv)2) ∀x
(xu − xv)2 ≤ 3((xu − xw)2 + (xw − xz)2 + (xz − xv)2) ∀x

Lu,v � 3(Lu,w + Lw,z + Lz,v) = 3LP (u,v)

The following is a useful lemma that establishes a lower bound on ν2 given λ2 (and the maximum
degree of a graph, dmax).

Lemma 1.3.

ν2 ≥
λ2
dmax

.

Proof. Recall by Courant-Fischer,

ν2 = min
x>(D1/21)=0

x>Nx

x>x
= min

T⊂RV

dim(T )=2

max
x∈T

x>Nx

x>x

We can substitute x = D1/2y. Since x ∈ T , it follows that y ∈ D1/2T :

= min
T⊂RV

dim(T )=2

max
y∈D1/2T

y>Ly

y>Dy
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Let T̂ = D1/2T . Note that we can assume that D is one-to-one and onto, and hence dim(T̂ ) = 2.
Otherwise, one of the vertices has degree zero, and hence λ2 = 0. Thus,

= min
T̂⊂RV

dim(T̂ )=2

max
y∈T̂

y>Ly

y>Dy

≥ min
T̂⊂RV

dim(T̂ )=2

max
y∈T̂

y>Ly

dmaxy>y

=
1

dmax
min
T̂⊂RV

dim(T̂ )=2

max
y∈T̂

y>Ly

y>y

=
λ2
dmax

Theorem 1.4. ν2 = Ω(1/n2) for a dumbbell graph.

Proof. We begin by finding a bound on λ2(LG), then apply the second lemma to establish the
relationship between λ2 and ν2.

Observe that for any u, v ∈ V , there is a path P (u, v) from u to v of length 3. Thus, we can
apply our first lemma:

Lu,v � 3LP (u,v) � 3LG

where the second � follows because we are simply adding more squares to LP (u,v). By summing
over all pairs (u, v) ∈ V × V , u 6= v,

LK2n � 3

(
2n

2

)
LG

By a corollary of Courant-Fischer, we know that

λ2(LK2n) ≤ λ2

(
3

(
2n

2

)
LG

)
= 3

(
2n

2

)
λ(LG)

Recall λ2(LKn) = n, so λ2(LK2n) = 2n. Furthermore, 3
(
2n
2

)
= Θ(n2). Thus,

λ2(LG) = Ω

(
1

n

)
Applying the second lemma, and the fact that dmax = n for the dumbbell graph,

ν2(LG) ≥ λ2(LG)

n
= Ω

(
1

n2

)
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2 Expanders

To motivate the following section, we notice that it would be nice to have graphs that approximate
cliques, in the sense that these graphs quickly approach their stationary distribution but that are
also sparser than cliques.

Definition 2.1. A d-regular, unweighted graph G is said to be an ε-expander if

−εd ≤ λi(A) ≤ εd ∀i < n.

Equivalently, because L = dI −A and N = 1
dL,

(1− ε)d ≤ λj(L) ≤ (1 + ε)d ∀j 6= 1

1− ε ≤ λj(N) ≤ 1 + ε ∀j 6= 1

(1− ε)LKn �
n

d
LG � (1 + ε)LKn

The last equivalence is not trivial, so we will demonstrate it below:

Lemma 2.2. G is a d-regular ε-expander iff

(1− ε)LKn �
n

d
LG � (1 + ε)LKn

Proof. This is equivalent to showing

(1− ε)x>LKnx ≤ n

d
x>LGx ≤ (1 + ε)x>LKnx ∀x

Any x can be expressed as the linear combination of the eigenvectors of LKn . Thus, x = c1 + y,
where y>1 = 0 and y has eigenvalue n. Restrict the inequality we are trying to prove to the space
orthogonal to span{1}:

(1− ε)ny>y ≤ n

d
y>LGy ≤ (1 + ε)ny>LKny ∀y

(1− ε)dy>y ≤ y>LGy ≤ (1 + ε)dy>LKny ∀y

(1− ε)d ≤ y>LGy

y>y
≤ (1 + ε)d ∀y

which is true by our second definition of the d-regular ε-expander.

In particular d-regular ε-expanders are nice because it would otherwise be difficult for such
graphs to arise randomly:

Let G(n, p) be a random graph model with n vertices such that each edge (u, v) occurs inde-
pendently with probability p.

Then E[no. of edges] = p
(
n
2

)
and E[deg v] = (n − 1)p. In other words, if we want dv to be

constant (to mimic a d-regular graph), we would only need p ∼ 1
n . However, for the graph to also

be connected we would have to take p ∼ logn
n . Therefore, a connected random graph will most

likely be more dense than its d-regular counterpart.
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Theorem 2.3. ∀ε > 0. ∃d(ε) such that there is a “family” of d-regular ε-expanders, ie. an
increasingly-sized collection of ε-expanders.

Corollary 2.4. Let G be a d-regular ε-expander. Then ν2(G) ≥ 1− ε = Ω(1) implies we only need
Θ(log n) steps to get close to stationary, and we only need log d bits of randomness to choose the
next vertex.

Compare this to Kn, which also takes Θ(log n) steps to get close to stationary, but would need
log n bits of randomness to choose the next vertex.
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