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1 Electrical Networks

Let us suppose that G = (V,E) is an undirected graph, for which |V | = n and |E| = m. It will be
convenient to assume in this section that its edges are of the form {u, v} for u, v ∈ V , highlighting
the fact that they are undirected. We shall later replace each edge e = {u, v} ∈ E, with one of
(u, v) or (v, u) to indicate the direction we wish to assign to e. In the former case, we say that u is
directed to v, and in the latter case, we say that v is directed to u.

If we additionally specify a pair of distinct vertices s, t ∈ V , then we may consider an electrical
current on G. Formally, this is a vector f ∈ RE . Intuitively, the current assigned to an edge should
also have a direction associated to it. In order to specify these directions, we first assign an arbitrary
orientation to the edges of G. If {u, v} ∈ E, then we can orient (direct) it from u to v by replacing
it with the directed edge (u, v), and by writing u→ v. We then adopt the following convention for
determining the direction of the |fe| units of current for the (directed) edge e = (u, v) ∈ Ẽ:

• If fu,v > 0, then we say that |fu,v| units of current move from u to v.

• If fu,v < 0, then we that |fu,v| units of current move from v to u.

• If fu,v = 0, then 0 units of current move in either direction.

Using this convention, the vector f ∈ RE is sufficient to describe the directions of the electrical
current on G.

Now that we have formalized our notation for representing electrical currents, we consider a
number of conservation conditions known as Kirchoff’s Laws. Intuitively, these laws say that for
each internal node (i.e v 6= s, t), the total amount of current entering v is equal to the total amount
of current leaving it. That is, formally we have∑

u:v→u
fu,v −

∑
w:w→v

fw,v = 0,

for each v ∈ V , v 6= s, t.
Of course, if we consider s to be the source of the circuit, and t to be its sink, then we can

generalize these constraints to include s and t as well. To do so, let us suppose that γ ≥ 0 is the
total external current entering the source s. In this case, we have that

∑
u:v→u

fu,v −
∑

w:w→v
fw,v =


γ if v = s

−γ if v = t

0 otherwise
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For our purposes, we shall normalize and assume that the amount of current entering s is 1;
that is, γ = 1. In this case, there exists a unique matrix B ∈ Rn×m encoding the constraints we
impose on f . We have that f satisfies the conservation laws, if and only if

Bf = 1s − 1t.

It is easy to check that for (u, v) ∈ E, if bu,v := 1u − 1v, then

B = [be1 . . .bem ],

provided e1, . . . , em are the (directed) edges of G.
Let us now additionally associate a resistance re to each edge e ∈ E. If we consider the vector

r := (re)e∈E , then we can define the diagonal matrix R ∈ Rm×m, by setting Diag (R) = r.
We can use R to define the energy of the current f . This is defined to be,∑

e∈E

1

2
ref

2
e =

1

2
fTRf .

With this definition, we can consider a natural optimization problem, in which b is taken to be
a fixed vector within RV , and B is the matrix defined above:

minimize
1

2
fTRf

subject to Bf = b

f ∈ RE
(1)

We say that a current f is an electrical current, provided it is an optimum solution to OP 1.

Proposition 1.1. If f is an optimum solution to OP 1 then Rf is orthogonal to ∆ ∈ Rm, provided
B∆ = 0.

Proof. Assume B∆ = 0. Given ε ∈ R, we know that f + ε∆ is a feasible solution to OP 1, as

B(f + ε∆) = Bf + εB∆ = Bf = b.

On the other hand, we know that f is an optimum solution so,

1

2
(f + ε∆)TR(f + ε∆) ≥ 1

2
fTRf .

After simplification, it follows that

ε(∆TRf + ε
1

2
∆TR∆) ≥ 0, (2)

for all ε. Notice also that the entries of R are nonnegative, so ∆TR∆ ≥ 0. We consider two cases:
ε > 0 and ε < 0. First, consider ε > 0. Then,

∆TRf + ε
1

2
∆TR∆ ≥ 0. (3)
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Now assume ∆TRf < 0. Then, let ε0 = −2∆TRf
∆TR∆

. Note that ε0 > 0 since ∆TRf < 0. This means
that

ε < ε0 ⇒ ∆TRf + ε
1

2
∆TR∆ < 0,

which is a contradiction. So, the assumption must be false and it must be true that ∆TRf ≥ 0.
Now consider the case where ε < 0. Then,

∆TRf + ε
1

2
∆TR∆ ≤ 0. (4)

Now assume ∆TRf > 0. Then, let ε0 = −2∆TRf
∆TR∆

. Note that ε0 < 0 since ∆TRf > 0. This means
that

ε > ε0 ⇒ ∆TRf + ε
1

2
∆TR∆ > 0,

which is a contradiction. So, the assumption must be false and it must be true that ∆TRf ≤ 0.
From the above cases, the only valid possibility is that ∆TRf = 0, proving that Rf is indeed

orthogonal to ∆.

Suppose that we now consider the subspace C := {∆ ∈ RE : B∆ = 0}. Clearly, C is the kernel
of the matrix B (which is typically denoted by ker(B)). Moreover, as a corollary to the above
proposition, we get the following result:

Corollary 1.2. If f is an optimal solution to Equation 2, then Rf is orthogonal to the kernel of
B; that is, f ∈ C⊥ in the above notation.

We shall now consider some properties of the subspace C. Before doing so, let us observe a
proposition regarding the matrix B.

Proposition 1.3. We have that rank(B) = n− 1 if and only if G is connected (where we consider
G as an undirected graph).

Proof. It is a standard result from linear algebra that both the row and column spaces of B have
the same dimension. This integer is defined precisely as the value of rank(B).

As a consequence of this result, we know that since BT is the transpose of B, each matrix must
have the same rank. It is therefore sufficient to show that the result holds for the matrix BT .

Observe that for any vector x ∈ RV , we have that

(BT )e = xu − xv,

for each directed edge e = (u, v) of G. In particular, this shows that BT
1V = 0, and so the

kernel of BT has dimension greater or equal to 1.
One can additionally show that if G is connected, then provided BTx = 0, we must have that

x ∈ span{1V }. In other words, the dimension of the kernel of BT is exactly 1. In this case, the
rank theorem for matrices implies that rank(BT ) = n− 1.

Generalizing the above results, we can prove that if k(G) ≥ 1 is the number of components of
G, then we have that rank(BT ) = n− k(G) (here the components are formed considering G as an
undirected graph). This completes both directions of the proposition.
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Lemma 1.4. If G is connected, then dim(C) = m− (n− 1).

Proof. This lemma is an immediate corollary of the previous result, combined with the rank theorem
for matrices.

Lemma 1.5. If Im(BT ) := {BTx : x ∈ RV }, namely the image of the matrix BT , then Im(BT ) =
C⊥ = ker(B)⊥.

Before we prove this lemma, we remark that this statement is a property of all matrices - it is
not specific to B.

Proof. Observe that Im(BT ) is spanned by the column vectors of BT . As a result, a vector x ∈ RE
is in Im(B)⊥ if and only if it is orthogonal to all the column vectors of BT . On the other hand, we
know that x satisfies this property if and only if it is in the kernel of B. We may therefore conclude
that,

Im(BT )⊥ = C.

Taking the orthogonal complement of both sides of the above equation, we may conclude that

Im(BT ) = C⊥,

thus completing the proof.

As a result of the preceding lemmas, we may conclude the following theorem:

Theorem 1.6. If f is an optimum solution to OP 1, then there exists some x ∈ RE such that
f = R−1BTx.

Proof. Observe that since f is an optimum solution, we know that Rf is orthogonal to C. On the
other hand, we know that Im(BT ) = C⊥, so there exists some x ∈ RV for which Rf = BTx. As
the matrix R is invertible, the result thus holds.

We know that if f is an optimum solution to OP 1, then we have that

b = Bf = BR−1BTx,

as Bf = b and f = R−1BTx. We can interpret the vector x as specifying a voltage of xv units
for each vertex v ∈ V . By applying R−1BT to this vector x, we can then recover the electrical
current f on the edges G, given that the resistances are defined by R.

In the next section, we shall characterize exactly what these voltage vectors look like. Before
we discuss how this can be done, we first observe that the matrix BR−1BT correponds to the
Laplacian of a specific weighted graph we now describe.

Lemma 1.7. The matrix BR−1BT is the Laplacian of G = (V,E,w), where we := 1
re

for each
e ∈ E.
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Proof. Observe that if R = I, the identity matrix, then

BBT =
∑

e=(u,v)∈E

(1u − 1v)(1u − 1v)T

=
∑

e=(u,v)∈E

Lu,v,

where Lu,v is the Laplacian of the edge e = (u, v) ∈ E.
If the matrix R is not the identity, then a similar computation shows that

BR−1BT =
∑

e=(u,v)∈E

1

re
(1u − 1v)(1u − 1v)T

=
∑

e=(u,v)∈E

1

re
Lu,v,

where the matrix 1
re
Lu,v is the Laplacian of the edge e = (u, v) with weight 1

re
.

1.1 Moore-Pensoose Pseudo-Inverse

Suppose that we are given a symmetric n× n matrix A together with an n-vector b, and we wish
to solve the equation Ax = b for solve variable x ∈ Rn. In the case in which A is invertible, the
vector x = A−1b is the unique solution to this equation. When the matrix A is not invertible,
then we can define the Moore-Pensoose Pseudo-Inverse of A. If λ1, . . . , λn are the eigenvalues of A,
then assume that ψ1, . . . , ψn are orthonormal eigenvectors of A. Using the spectral decomposition
of A, we know that

A =

n∑
i=1

λiψiψ
T
i .

We then define

A+ :=
n∑

i=1:λi 6=0

1

λi
ψiψ

T
i ,

as the pseudo-inverse of A.
If we consider the specific case when we are given an undirected graph G = (V,E), then we can

consider the pseudo-inverse L+ of its Laplacian L. In this case, assuming that λ1 ≤ . . . ≤ λn are
the eigenvalues of L, then we have that

L(L+b) =
n∑

i=1:λi>0

ψiψ
T
i b, (5)

where ψ1, . . . , ψn are orthonormal eigenvectors of λ1, . . . , λn. Observe that if we define the
matrix Π :=

∑n
i=1:λi>0 ψiψ

T
i , then Π ∈ RV×V . Moreover, Π is an orthogonal projection onto
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the subspace spanned by β := {ψi : λi > 0 and 1 ≤ i ≤ n}. That is, Π2 = Π, ΠT = Π and
Im(Π) = span(β).

For our purposes, we are particularly interested in the case when G is connected. If this is true,
then we know that the kernel of L is spanned by 1V , and so λi > 0 for i = 2, . . . , n. If we also
assume that b is orthogonal to 1V , then b ∈ span(β), and so Π(b) = b.

Under these assumptions, observe that Equation 5 simplifies to

L(L+b) = b.

We may therefore conclude that x = L+b is a solution to the equation “Lx = b”.

Lemma 1.8. If G = (V,E) is a connected graph, and b ∈ RV is orthogonal to 1V , then

{x ∈ RV : Lx = b} = {L+b + α1V : α ∈ R}.

Remark 1.9. If we orient the edges of G and consider currents on the edges of G, then the
condition on b has a natural interpretation: We can think of the assumption bT1V = 0 as enforcing
the constraint that the net current into the circuit must be 0. For example, in the case of a single
source-sink pair (s, t), the vector b := 1s − 1t has exactly one unit of current entering s and one
unit of current leaving t. Clearly, the orthogonality condition is satisfied in this case.

Proof. Observe that if α ∈ R, then we have that

L(L+b + α1V ) = b,

as 1V is in the kernel of L. We may therefore conclude that

{L+b + α1V : α ∈ R} ⊆ {x ∈ RV : Lx = b}.

To see the other inclusion, assume that x ∈ RV is such that Lx = b. In this case, we have that
Lx = b = L(L+b). Thus,

L(L+b− x) = 0,

and so L+b−x ∈ ker(L). But G was assumed to be connected, so the kernel of L is spanned by
1V . It follows that there exists some α0 ∈ R such that L+b− x = α01V . Thus, x = L+b− α01V ,
and so x ∈ {L+b + α1V : α ∈ R}. This implies the other direction of the inclusion, and so the
statement holds.

We conclude this section by remarking that if we orient the graph G as in the previous section,
and specify a resistance matrix R on its edges, then we can consider the special matrix defined by
L = BR−1BT , where the matrix B is derived from the orientation on G. As we saw previously, L
is in fact a Laplacian matrix. If we set b := 1s − 1t for some source-sink pair (s, t) ∈ V , then we
can interpret this vector as passing 1 unit of current into s, and 1 unit out of t. In particular, we
know that 1Tb = 0. Thus, if we consider solutions to the equation “Lx = b”, we know that

{x ∈ RV : Lx = b} = {L+b + α1V : α ∈ R},
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by Lemma 1.8. Observe that if x := L+b + α1V for some α ∈ R, then x specifies voltages on
the vertices of G. Moreover, by applying R−1BT to x, we can recover the current

f = R−1BT (L+b + α1V ).

Of course, BT
1V = 0, so this means that f = R−1BT (L+b). In particular, the current f must

be an optimum solution to OP 1 by Theorem 1.6. In other words, any voltage solution of the above
form induces an electrical current through G; that is, a current whose energy is minimum.

1.2 Random Walks

Let us consider a weighted undirected graph G = (V,E,w), together with a pair of distinct nodes
s, t ∈ V . If we assume that G is connected, and start a (non-lazy) random walk at node s, then we
can define h(s, t) to be the expected number of steps for the walk to reach t for the first time. One
can show that this value is finite, no matter which nodes are chosen.

If we fix the node t, then we can define the vector ht ∈ RV , where

ht(s) := h(s, t),

for each s ∈ V (G). We first observe that for x 6= t,

ht(x) = 1 +
∑

y:{x,y}∈E

wx,y
deg(x)

ht(y),

and ht(t) = 0. As a consequence, we know that for each x 6= t,

deg(x)ht(x) = deg(x) +
∑

y:{x,y}∈E

wx,yht(y).

In vector notation, provided x 6= t, we can express this as

(Dht)(x) = (D1V )(x) + (Aht)(x),

provided A is the adjacency matrix of G, and D is its degree matrix. Observe then that

(Lht)(x) = (D1V )(x),

for all x 6= t, where L is the Laplacian of G. On the other hand, we know that

0 = 1
T
V Lht =

∑
x 6=t

(Lht)(x) + (Lht)(t),

as 1V is in the kernel of L, and is thus orthogonal to Lht (check this). It follows that

(Lht)(t) = −
∑
x 6=t

deg(x) = deg(t)− 1TD1.

If we define b := D1V − (1TD1)1t, then this implies that

Lht = b.
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We may therefore use Lemma 1.8 to conclude that

ht = L+(D1− (1TD1)1t) + α1,

for some α ∈ R, as b is orthogonal to 1. Observing that ht(t) = 0, we may conclude that

1
T
t ht = 1

T
t (L+b + α1) = 0.

Thus, α = −1Tt L+b. If we fix some s ∈ V , then this implies that

h(s, t) =1Ts ht

=1Ts L
+b + α1Ts 1

=1Ts L
+b− 1Tt L+b

=(1s − 1t)TL+(D1− (1TD1)1t),

giving us a convenient expression for the hitting time vector ht.

1.3 Commute Time

In addition to hitting times on undirected weighted graphs, we can also define commute times. If
G = (V,E,w) is connected, then provided s, t ∈ V , we can define the commute time from s to t as

C(s, t) := h(s, t) + h(t, s).

By our results from the previous section, we know that

h(s, t) = (1s − 1t)TL+(D1− (1TD1)1t)

Thus, after simplification

C(s, t) = [(1s − 1t)TL+(1s − 1t)](1TD1).

We remark that the vector L+(1s−1t) can be interpreted as specifying voltages on the vertices
of G. If 1 unit of current enters s and 1 unit leaves t, then an electrical current can be derived from
this vector (see the end of the previous section for details).

8


	Lecture 6 – Electrical Networks and their Applications to Random Walks
	Electrical Networks
	Moore-Pensoose Pseudo-Inverse
	Random Walks
	Commute Time



