1 Electrical Networks

Let us suppose that $G=(V, E)$ is an undirected graph, for which $|V|=n$ and $|E|=m$. It will be convenient to assume in this section that its edges are of the form $\{u, v\}$ for $u, v \in V$, highlighting the fact that they are undirected. We shall later replace each edge $e=\{u, v\} \in E$, with one of (u, v) or (v, u) to indicate the direction we wish to assign to e. In the former case, we say that u is directed to v, and in the latter case, we say that v is directed to u.

If we additionally specify a pair of distinct vertices $s, t \in V$, then we may consider an electrical current on G. Formally, this is a vector $\mathbf{f} \in \mathbb{R}^{E}$. Intuitively, the current assigned to an edge should also have a direction associated to it. In order to specify these directions, we first assign an arbitrary orientation to the edges of G. If $\{u, v\} \in E$, then we can orient (direct) it from u to v by replacing it with the directed edge (u, v), and by writing $u \rightarrow v$. We then adopt the following convention for determining the direction of the $\left|f_{e}\right|$ units of current for the (directed) edge $e=(u, v) \in \tilde{E}$:

- If $f_{u, v}>0$, then we say that $\left|f_{u, v}\right|$ units of current move from u to v.
- If $f_{u, v}<0$, then we that $\left|f_{u, v}\right|$ units of current move from v to u.
- If $f_{u, v}=0$, then 0 units of current move in either direction.

Using this convention, the vector $\mathbf{f} \in \mathbb{R}^{E}$ is sufficient to describe the directions of the electrical current on G.

Now that we have formalized our notation for representing electrical currents, we consider a number of conservation conditions known as Kirchoff's Laws. Intuitively, these laws say that for each internal node (i.e $v \neq s, t$), the total amount of current entering v is equal to the total amount of current leaving it. That is, formally we have

$$
\sum_{u: v \rightarrow u} f_{u, v}-\sum_{w: w \rightarrow v} f_{w, v}=0,
$$

for each $v \in V, v \neq s, t$.
Of course, if we consider s to be the source of the circuit, and t to be its sink, then we can generalize these constraints to include s and t as well. To do so, let us suppose that $\gamma \geq 0$ is the total external current entering the source s. In this case, we have that

$$
\sum_{u: v \rightarrow u} f_{u, v}-\sum_{w: w \rightarrow v} f_{w, v}= \begin{cases}\gamma & \text { if } v=s \\ -\gamma & \text { if } v=t \\ 0 & \text { otherwise }\end{cases}
$$

For our purposes, we shall normalize and assume that the amount of current entering s is 1 ; that is, $\gamma=1$. In this case, there exists a unique matrix $\mathbf{B} \in \mathbb{R}^{n \times m}$ encoding the constraints we impose on \mathbf{f}. We have that \mathbf{f} satisfies the conservation laws, if and only if

$$
\mathbf{B f}=\mathbb{1}_{s}-\mathbb{1}_{t} .
$$

It is easy to check that for $(u, v) \in E$, if $\mathbf{b}_{u, v}:=\mathbb{1}_{u}-\mathbb{1}_{v}$, then

$$
\mathbf{B}=\left[\mathbf{b}_{e_{1}} \ldots \mathbf{b}_{e_{m}}\right]
$$

provided e_{1}, \ldots, e_{m} are the (directed) edges of G.
Let us now additionally associate a resistance r_{e} to each edge $e \in E$. If we consider the vector $\mathbf{r}:=\left(r_{e}\right)_{e \in E}$, then we can define the diagonal matrix $\mathbf{R} \in \mathbb{R}^{m \times m}$, by setting $\operatorname{Diag}(\mathbf{R})=\mathbf{r}$.

We can use \mathbf{R} to define the energy of the current \mathbf{f}. This is defined to be,

$$
\sum_{e \in E} \frac{1}{2} r_{e} f_{e}^{2}=\frac{1}{2} \mathbf{f}^{T} \mathbf{R f} .
$$

With this definition, we can consider a natural optimization problem, in which \mathbf{b} is taken to be a fixed vector within \mathbb{R}^{V}, and \mathbf{B} is the matrix defined above:

$$
\begin{array}{lc}
\operatorname{minimize} & \frac{1}{2} \mathbf{f}^{T} \mathbf{R f} \\
\text { subject to } & \mathbf{B f}=\mathbf{b} \tag{1}\\
& \mathbf{f} \in \mathbb{R}^{E}
\end{array}
$$

We say that a current \mathbf{f} is an electrical current, provided it is an optimum solution to OP 1 .
Proposition 1.1. If \mathbf{f} is an optimum solution to $O P\left[1\right.$ then $\mathbf{R f}$ is orthogonal to $\Delta \in \mathbb{R}^{m}$, provided $\mathbf{B} \Delta=0$.

Proof. Assume $\mathbf{B} \Delta=0$. Given $\epsilon \in \mathbb{R}$, we know that $\mathbf{f}+\epsilon \Delta$ is a feasible solution to OP 1 , as

$$
\mathbf{B}(\mathbf{f}+\epsilon \Delta)=\mathbf{B f}+\epsilon \mathbf{B} \Delta=\mathbf{B f}=b
$$

On the other hand, we know that \mathbf{f} is an optimum solution so,

$$
\frac{1}{2}(\mathbf{f}+\epsilon \Delta)^{T} \mathbf{R}(\mathbf{f}+\epsilon \Delta) \geq \frac{1}{2} \mathbf{f}^{T} \mathbf{R f}
$$

After simplification, it follows that

$$
\begin{equation*}
\epsilon\left(\Delta^{T} \mathbf{R} \mathbf{f}+\epsilon \frac{1}{2} \Delta^{T} \mathbf{R} \Delta\right) \geq 0 \tag{2}
\end{equation*}
$$

for all ϵ. Notice also that the entries of \mathbf{R} are nonnegative, so $\Delta^{T} \mathbf{R} \Delta \geq 0$. We consider two cases: $\epsilon>0$ and $\epsilon<0$. First, consider $\epsilon>0$. Then,

$$
\begin{equation*}
\Delta^{T} \mathbf{R} \mathbf{f}+\epsilon \frac{1}{2} \Delta^{T} \mathbf{R} \Delta \geq 0 \tag{3}
\end{equation*}
$$

Now assume $\Delta^{T} \mathbf{R} \mathbf{f}<0$. Then, let $\epsilon_{0}=-\frac{2 \Delta^{T} \mathbf{R} \mathbf{f}}{\Delta^{T} \mathbf{R} \Delta}$. Note that $\epsilon_{0}>0$ since $\Delta^{T} \mathbf{R f}<0$. This means that

$$
\epsilon<\epsilon_{0} \Rightarrow \Delta^{T} \mathbf{R f}+\epsilon \frac{1}{2} \Delta^{T} \mathbf{R} \Delta<0
$$

which is a contradiction. So, the assumption must be false and it must be true that $\Delta^{T} \mathbf{R f} \geq 0$.
Now consider the case where $\epsilon<0$. Then,

$$
\begin{equation*}
\Delta^{T} \mathbf{R} \mathbf{f}+\epsilon \frac{1}{2} \Delta^{T} \mathbf{R} \Delta \leq 0 \tag{4}
\end{equation*}
$$

Now assume $\Delta^{T} \mathbf{R f}>0$. Then, let $\epsilon_{0}=-\frac{2 \Delta^{T} \mathbf{R f}}{\Delta^{T} \mathbf{R} \Delta}$. Note that $\epsilon_{0}<0$ since $\Delta^{T} \mathbf{R f}>0$. This means that

$$
\epsilon>\epsilon_{0} \Rightarrow \Delta^{T} \mathbf{R} \mathbf{f}+\epsilon \frac{1}{2} \Delta^{T} \mathbf{R} \Delta>0
$$

which is a contradiction. So, the assumption must be false and it must be true that $\Delta^{T} \mathbf{R f} \leq 0$.
From the above cases, the only valid possibility is that $\Delta^{T} \mathbf{R f}=0$, proving that $\mathbf{R f}$ is indeed orthogonal to Δ.

Suppose that we now consider the subspace $C:=\left\{\Delta \in \mathbb{R}^{E}: \mathbf{B} \Delta=0\right\}$. Clearly, C is the kernel of the matrix \mathbf{B} (which is typically denoted by $\operatorname{ker}(\mathbf{B})$). Moreover, as a corollary to the above proposition, we get the following result:

Corollary 1.2. If \mathbf{f} is an optimal solution to Equation ${ }^{2}$, then $\mathbf{R f}$ is orthogonal to the kernel of \mathbf{B}; that is, $\mathbf{f} \in C^{\perp}$ in the above notation.

We shall now consider some properties of the subspace C. Before doing so, let us observe a proposition regarding the matrix \mathbf{B}.

Proposition 1.3. We have that $\operatorname{rank}(\mathbf{B})=n-1$ if and only if G is connected (where we consider G as an undirected graph).

Proof. It is a standard result from linear algebra that both the row and column spaces of \mathbf{B} have the same dimension. This integer is defined precisely as the value of $\operatorname{rank}(\mathbf{B})$.

As a consequence of this result, we know that since \mathbf{B}^{T} is the transpose of \mathbf{B}, each matrix must have the same rank. It is therefore sufficient to show that the result holds for the matrix \mathbf{B}^{T}.

Observe that for any vector $\mathbf{x} \in \mathbb{R}^{V}$, we have that

$$
\left(\mathbf{B}^{T}\right)_{e}=x_{u}-x_{v}
$$

for each directed edge $e=(u, v)$ of G. In particular, this shows that $\mathbf{B}^{T} \mathbb{1}_{V}=0$, and so the kernel of \mathbf{B}^{T} has dimension greater or equal to 1 .

One can additionally show that if G is connected, then provided $\mathbf{B}^{T} \mathbf{x}=0$, we must have that $\mathbf{x} \in \operatorname{span}\left\{\mathbb{1}_{V}\right\}$. In other words, the dimension of the kernel of \mathbf{B}^{T} is exactly 1 . In this case, the rank theorem for matrices implies that $\operatorname{rank}\left(\mathbf{B}^{T}\right)=n-1$.

Generalizing the above results, we can prove that if $k(G) \geq 1$ is the number of components of G, then we have that $\operatorname{rank}\left(\mathbf{B}^{T}\right)=n-k(G)$ (here the components are formed considering G as an undirected graph). This completes both directions of the proposition.

Lemma 1.4. If G is connected, then $\operatorname{dim}(C)=m-(n-1)$.
Proof. This lemma is an immediate corollary of the previous result, combined with the rank theorem for matrices.

Lemma 1.5. If $\operatorname{Im}\left(\mathbf{B}^{T}\right):=\left\{\mathbf{B}^{T} \mathbf{x}: \mathbf{x} \in \mathbb{R}^{V}\right\}$, namely the image of the matrix \mathbf{B}^{T}, then $\operatorname{Im}\left(\mathbf{B}^{T}\right)=$ $C^{\perp}=k e r(B)^{\perp}$.

Before we prove this lemma, we remark that this statement is a property of all matrices - it is not specific to \mathbf{B}.

Proof. Observe that $\operatorname{Im}\left(\mathbf{B}^{T}\right)$ is spanned by the column vectors of \mathbf{B}^{T}. As a result, a vector $\mathbf{x} \in \mathbb{R}^{E}$ is in $\operatorname{Im}(\mathbf{B})^{\perp}$ if and only if it is orthogonal to all the column vectors of \mathbf{B}^{T}. On the other hand, we know that \mathbf{x} satisfies this property if and only if it is in the kernel of \mathbf{B}. We may therefore conclude that,

$$
\operatorname{Im}\left(\mathbf{B}^{T}\right)^{\perp}=C
$$

Taking the orthogonal complement of both sides of the above equation, we may conclude that

$$
\operatorname{Im}\left(\mathbf{B}^{T}\right)=C^{\perp},
$$

thus completing the proof.

As a result of the preceding lemmas, we may conclude the following theorem:
Theorem 1.6. If \mathbf{f} is an optimum solution to $O P$ 1, then there exists some $\mathbf{x} \in \mathbb{R}^{E}$ such that $\mathbf{f}=\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{x}$.

Proof. Observe that since \mathbf{f} is an optimum solution, we know that $\mathbf{R f}$ is orthogonal to C. On the other hand, we know that $\operatorname{Im}\left(B^{T}\right)=C^{\perp}$, so there exists some $\mathbf{x} \in \mathbb{R}^{V}$ for which $\mathbf{R f}=\mathbf{B}^{T} \mathbf{x}$. As the matrix \mathbf{R} is invertible, the result thus holds.

We know that if \mathbf{f} is an optimum solution to OP 1, then we have that

$$
\mathbf{b}=\mathbf{B f}=\mathbf{B R}^{-1} \mathbf{B}^{T} \mathbf{x}
$$

as $\mathbf{B f}=\mathbf{b}$ and $\mathbf{f}=\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{x}$. We can interpret the vector \mathbf{x} as specifying a voltage of x_{v} units for each vertex $v \in V$. By applying $\mathbf{R}^{-1} \mathbf{B}^{T}$ to this vector \mathbf{x}, we can then recover the electrical current \mathbf{f} on the edges G, given that the resistances are defined by \mathbf{R}.

In the next section, we shall characterize exactly what these voltage vectors look like. Before we discuss how this can be done, we first observe that the matrix $\mathbf{B R}{ }^{-1} \mathbf{B}^{T}$ correponds to the Laplacian of a specific weighted graph we now describe.

Lemma 1.7. The matrix $\mathbf{B R}^{-1} \mathbf{B}^{T}$ is the Laplacian of $G=(V, E, w)$, where $w_{e}:=\frac{1}{r_{e}}$ for each $e \in E$.

Proof. Observe that if $R=I$, the identity matrix, then

$$
\begin{aligned}
\mathbf{B B}^{T} & =\sum_{e=(u, v) \in E}\left(\mathbb{1}_{u}-\mathbb{1}_{v}\right)\left(\mathbb{1}_{u}-\mathbb{1}_{v}\right)^{T} \\
& =\sum_{e=(u, v) \in E} L_{u, v},
\end{aligned}
$$

where $L_{u, v}$ is the Laplacian of the edge $e=(u, v) \in E$.
If the matrix R is not the identity, then a similar computation shows that

$$
\begin{aligned}
\mathbf{B R}^{-1} \mathbf{B}^{T} & =\sum_{e=(u, v) \in E} \frac{1}{r_{e}}\left(\mathbb{1}_{u}-\mathbb{1}_{v}\right)\left(\mathbb{1}_{u}-\mathbb{1}_{v}\right)^{T} \\
& =\sum_{e=(u, v) \in E} \frac{1}{r_{e}} L_{u, v},
\end{aligned}
$$

where the matrix $\frac{1}{r_{e}} L_{u, v}$ is the Laplacian of the edge $e=(u, v)$ with weight $\frac{1}{r_{e}}$.

1.1 Moore-Pensoose Pseudo-Inverse

Suppose that we are given a symmetric $n \times n$ matrix \mathbf{A} together with an n-vector \mathbf{b}, and we wish to solve the equation $\mathbf{A x}=\mathbf{b}$ for solve variable $\mathbf{x} \in \mathbb{R}^{n}$. In the case in which \mathbf{A} is invertible, the vector $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ is the unique solution to this equation. When the matrix \mathbf{A} is not invertible, then we can define the Moore-Pensoose Pseudo-Inverse of \mathbf{A}. If $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of \mathbf{A}, then assume that $\psi_{1}, \ldots, \psi_{n}$ are orthonormal eigenvectors of \mathbf{A}. Using the spectral decomposition of \mathbf{A}, we know that

$$
\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} \psi_{i} \psi_{i}^{T} .
$$

We then define

$$
\mathbf{A}^{+}:=\sum_{i=1: \lambda_{i} \neq 0}^{n} \frac{1}{\lambda_{i}} \psi_{i} \psi_{i}^{T},
$$

as the pseudo-inverse of \mathbf{A}.
If we consider the specific case when we are given an undirected graph $G=(V, E)$, then we can consider the pseudo-inverse \mathbf{L}^{+}of its Laplacian \mathbf{L}. In this case, assuming that $\lambda_{1} \leq \ldots \leq \lambda_{n}$ are the eigenvalues of \mathbf{L}, then we have that

$$
\begin{equation*}
\mathbf{L}\left(\mathbf{L}^{+} \mathbf{b}\right)=\sum_{i=1: \lambda_{i}>0}^{n} \psi_{i} \psi_{i}^{T} \mathbf{b}, \tag{5}
\end{equation*}
$$

where $\psi_{1}, \ldots, \psi_{n}$ are orthonormal eigenvectors of $\lambda_{1}, \ldots, \lambda_{n}$. Observe that if we define the matrix $\Pi:=\sum_{i=1: \lambda_{i}>0}^{n} \psi_{i} \psi_{i}^{T}$, then $\Pi \in \mathbb{R}^{V \times V}$. Moreover, Π is an orthogonal projection onto
the subspace spanned by $\beta:=\left\{\psi_{i}: \lambda_{i}>0\right.$ and $\left.1 \leq i \leq n\right\}$. That is, $\Pi^{2}=\Pi, \Pi^{T}=\Pi$ and $\operatorname{Im}(\Pi)=\operatorname{span}(\beta)$.

For our purposes, we are particularly interested in the case when G is connected. If this is true, then we know that the kernel of \mathbf{L} is spanned by $\mathbb{1}_{V}$, and so $\lambda_{i}>0$ for $i=2, \ldots, n$. If we also assume that \mathbf{b} is orthogonal to $\mathbb{1}_{V}$, then $\mathbf{b} \in \operatorname{span}(\beta)$, and so $\Pi(\mathbf{b})=\mathbf{b}$.

Under these assumptions, observe that Equation 5 simplifies to

$$
\mathbf{L}\left(\mathbf{L}^{+} \mathbf{b}\right)=\mathbf{b}
$$

We may therefore conclude that $\mathbf{x}=\mathbf{L}^{+} \mathbf{b}$ is a solution to the equation " $\mathbf{L x}=\mathbf{b}$ ".
Lemma 1.8. If $G=(V, E)$ is a connected graph, and $\mathbf{b} \in \mathbb{R}^{V}$ is orthogonal to $\mathbb{1}_{V}$, then

$$
\left\{\mathbf{x} \in \mathbb{R}^{V}: \mathbf{L x}=\mathbf{b}\right\}=\left\{\mathbf{L}^{+} \mathbf{b}+\alpha \mathbb{1}_{V}: \alpha \in \mathbb{R}\right\} .
$$

Remark 1.9. If we orient the edges of G and consider currents on the edges of G, then the condition on \mathbf{b} has a natural interpretation: We can think of the assumption $\mathbf{b}^{T} \mathbb{1}_{V}=0$ as enforcing the constraint that the net current into the circuit must be 0 . For example, in the case of a single source-sink pair (s, t), the vector $\mathbf{b}:=\mathbb{1}_{s}-\mathbb{1}_{t}$ has exactly one unit of current entering s and one unit of current leaving t. Clearly, the orthogonality condition is satisfied in this case.

Proof. Observe that if $\alpha \in \mathbb{R}$, then we have that

$$
\mathbf{L}\left(\mathbf{L}^{+} \mathbf{b}+\alpha \mathbb{1}_{V}\right)=\mathbf{b},
$$

as $\mathbb{1}_{V}$ is in the kernel of \mathbf{L}. We may therefore conclude that

$$
\left\{\mathbf{L}^{+} \mathbf{b}+\alpha \mathbb{1}_{V}: \alpha \in \mathbb{R}\right\} \subseteq\left\{\mathbf{x} \in \mathbb{R}^{V}: \mathbf{L x}=\mathbf{b}\right\}
$$

To see the other inclusion, assume that $\mathbf{x} \in \mathbb{R}^{V}$ is such that $\mathbf{L x}=\mathbf{b}$. In this case, we have that $\mathbf{L x}=\mathbf{b}=\mathbf{L}\left(\mathbf{L}^{+} \mathbf{b}\right)$. Thus,

$$
\mathbf{L}\left(\mathbf{L}^{+} \mathbf{b}-\mathbf{x}\right)=0
$$

and so $\mathbf{L}^{+} \mathbf{b}-\mathbf{x} \in \operatorname{ker}(\mathbf{L})$. But G was assumed to be connected, so the kernel of \mathbf{L} is spanned by $\mathbb{1}_{V}$. It follows that there exists some $\alpha_{0} \in \mathbb{R}$ such that $\mathbf{L}^{+} \mathbf{b}-\mathbf{x}=\alpha_{0} \mathbb{1}_{V}$. Thus, $\mathbf{x}=\mathbf{L}^{+} \mathbf{b}-\alpha_{0} \mathbb{1}_{V}$, and so $\mathbf{x} \in\left\{\mathbf{L}^{+} \mathbf{b}+\alpha \mathbb{1}_{V}: \alpha \in \mathbb{R}\right\}$. This implies the other direction of the inclusion, and so the statement holds.

We conclude this section by remarking that if we orient the graph G as in the previous section, and specify a resistance matrix \mathbf{R} on its edges, then we can consider the special matrix defined by $\mathbf{L}=\mathbf{B R}^{-1} \mathbf{B}^{T}$, where the matrix \mathbf{B} is derived from the orientation on G. As we saw previously, \mathbf{L} is in fact a Laplacian matrix. If we set $\mathbf{b}:=\mathbb{1}_{s}-\mathbb{1}_{t}$ for some source-sink pair $(s, t) \in V$, then we can interpret this vector as passing 1 unit of current into s, and 1 unit out of t. In particular, we know that $\mathbb{1}^{T} \mathbf{b}=0$. Thus, if we consider solutions to the equation " $\mathbf{L x}=\mathbf{b}$ ", we know that

$$
\left\{\mathbf{x} \in \mathbb{R}^{V}: \mathbf{L x}=\mathbf{b}\right\}=\left\{\mathbf{L}^{+} \mathbf{b}+\alpha \mathbb{1}_{V}: \alpha \in \mathbb{R}\right\},
$$

by Lemma 1.8. Observe that if $\mathbf{x}:=\mathbf{L}^{+} \mathbf{b}+\alpha \mathbb{1}_{V}$ for some $\alpha \in \mathbb{R}$, then \mathbf{x} specifies voltages on the vertices of G. Moreover, by applying $\mathbf{R}^{-1} \mathbf{B}^{T}$ to \mathbf{x}, we can recover the current

$$
\mathbf{f}=\mathbf{R}^{-1} \mathbf{B}^{T}\left(\mathbf{L}^{+} \mathbf{b}+\alpha \mathbb{1}_{V}\right) .
$$

Of course, $\mathbf{B}^{T} \mathbb{1}_{V}=0$, so this means that $\mathbf{f}=\mathbf{R}^{-1} \mathbf{B}^{T}\left(\mathbf{L}^{+} \mathbf{b}\right)$. In particular, the current \mathbf{f} must be an optimum solution to OP 1 by Theorem 1.6. In other words, any voltage solution of the above form induces an electrical current through G; that is, a current whose energy is minimum.

1.2 Random Walks

Let us consider a weighted undirected graph $G=(V, E, \mathbf{w})$, together with a pair of distinct nodes $s, t \in V$. If we assume that G is connected, and start a (non-lazy) random walk at node s, then we can define $h(s, t)$ to be the expected number of steps for the walk to reach t for the first time. One can show that this value is finite, no matter which nodes are chosen.

If we fix the node t, then we can define the vector $\mathbf{h}_{t} \in \mathbb{R}^{V}$, where

$$
\mathbf{h}_{t}(s):=h(s, t),
$$

for each $s \in V(G)$. We first observe that for $x \neq t$,

$$
\mathbf{h}_{t}(x)=1+\sum_{y:\{x, y\} \in E} \frac{w_{x, y}}{\operatorname{deg}(x)} \mathbf{h}_{t}(y),
$$

and $\mathbf{h}_{t}(t)=0$. As a consequence, we know that for each $x \neq t$,

$$
\operatorname{deg}(x) \mathbf{h}_{t}(x)=\operatorname{deg}(x)+\sum_{y:\{x, y\} \in E} w_{x, y} \mathbf{h}_{t}(y) .
$$

In vector notation, provided $x \neq t$, we can express this as

$$
\left(\mathbf{D} \mathbf{h}_{t}\right)(x)=\left(\mathbf{D} \mathbb{1}_{V}\right)(x)+\left(\mathbf{A} \mathbf{h}_{t}\right)(x),
$$

provided \mathbf{A} is the adjacency matrix of G, and \mathbf{D} is its degree matrix. Observe then that

$$
\left(\mathbf{L h}_{t}\right)(x)=\left(\mathbf{D} \mathbb{1}_{V}\right)(x)
$$

for all $x \neq t$, where \mathbf{L} is the Laplacian of G. On the other hand, we know that

$$
0=\mathbb{1}_{V}^{T} \mathbf{L} \mathbf{h}_{t}=\sum_{x \neq t}\left(\mathbf{L} \mathbf{h}_{t}\right)(x)+\left(\mathbf{L} \mathbf{h}_{t}\right)(t),
$$

as $\mathbb{1}_{V}$ is in the kernel of \mathbf{L}, and is thus orthogonal to $\mathbf{L h}_{t}$ (check this). It follows that

$$
\left(\mathbf{L h}_{t}\right)(t)=-\sum_{x \neq t} \operatorname{deg}(x)=\operatorname{deg}(t)-\mathbb{1}^{T} \mathbf{D} \mathbb{1} .
$$

If we define $\mathbf{b}:=\mathbf{D} \mathbb{1}_{V}-\left(\mathbb{1}^{T} \mathbf{D} \mathbb{1}\right) \mathbb{1}_{t}$, then this implies that

$$
\mathbf{L h}_{t}=\mathbf{b} .
$$

We may therefore use Lemma 1.8 to conclude that

$$
\mathbf{h}_{t}=\mathbf{L}^{+}\left(\mathbf{D} \mathbb{1}-\left(\mathbb{1}^{T} \mathbf{D} \mathbb{1}\right) \mathbb{1}_{t}\right)+\alpha \mathbb{1},
$$

for some $\alpha \in \mathbb{R}$, as \mathbf{b} is orthogonal to $\mathbb{1}$. Observing that $\mathbf{h}_{t}(t)=0$, we may conclude that

$$
\mathbb{1}_{t}^{T} \mathbf{h}_{t}=\mathbb{1}_{t}^{T}\left(\mathbf{L}^{+} \mathbf{b}+\alpha \mathbb{1}\right)=0
$$

Thus, $\alpha=-\mathbb{1}_{t}^{T} \mathbf{L}^{+} \mathbf{b}$. If we fix some $s \in V$, then this implies that

$$
\begin{aligned}
h(s, t) & =\mathbb{1}_{s}^{T} \mathbf{h}_{t} \\
& =\mathbb{1}_{s}^{T} \mathbf{L}^{+} \mathbf{b}+\alpha \mathbb{1}_{s}^{T} \mathbb{1} \\
& =\mathbb{1}_{s}^{T} \mathbf{L}^{+} \mathbf{b}-\mathbb{1}_{t}^{T} \mathbf{L}^{+} \mathbf{b} \\
& =\left(\mathbb{1}_{s}-\mathbb{1}_{t}\right)^{T} \mathbf{L}^{+}\left(\mathbf{D} \mathbb{1}-\left(\mathbb{1}^{T} \mathbf{D} \mathbb{1}\right) \mathbb{1}_{t}\right),
\end{aligned}
$$

giving us a convenient expression for the hitting time vector \mathbf{h}_{t}.

1.3 Commute Time

In addition to hitting times on undirected weighted graphs, we can also define commute times. If $G=(V, E, \mathbf{w})$ is connected, then provided $s, t \in V$, we can define the commute time from s to t as

$$
C(s, t):=h(s, t)+h(t, s) .
$$

By our results from the previous section, we know that

$$
h(s, t)=\left(\mathbb{1}_{s}-\mathbb{1}_{t}\right)^{T} \mathbf{L}^{+}\left(\mathbf{D} \mathbb{1}-\left(\mathbb{1}^{T} \mathbf{D} \mathbb{1}\right) \mathbb{1}_{t}\right)
$$

Thus, after simplification

$$
C(s, t)=\left[\left(\mathbb{1}_{s}-\mathbb{1}_{t}\right)^{T} \mathbf{L}^{+}\left(\mathbb{1}_{s}-\mathbb{1}_{t}\right)\right]\left(\mathbb{1}^{T} \mathbf{D} \mathbb{1}\right) .
$$

We remark that the vector $\mathbf{L}^{+}\left(\mathbb{1}_{s}-\mathbb{1}_{t}\right)$ can be interpreted as specifying voltages on the vertices of G. If 1 unit of current enters s and 1 unit leaves t, then an electrical current can be derived from this vector (see the end of the previous section for details).

