CSC 2421H : Graphs, Matrices, and Optimization Lecture 2 : 17 Sep 2018

Clustering

Lecturer: Sushant Sachdeva Scribe: Liwen Lu

1 Clustering of a Graph and Eigenvalue

Informally, “clustering” is grouping vertices such that there are more connectivity inside each group
compare to between groups.

1.1 Conductance

Definition 1.1. Volume: let S C V, vol(S) & >~ dy where d, = deg(v) = D, ,

vES ,
Lemma 1.2. Define the indicator of set S as

1, vesS
1g(v) =
s(v) {O, otherwise

Then
15D1g = vol(S)

Definition 1.3. Define Boundary of S as
E(S,S) = {(u,v)|(u,v) € BE,u € S,veV\S},
where S is the complement set.

Definition 1.4. Define conductance of S measured in graph G to be

et |E(S,S)|
pc(S) = min{vol(S),vol(V \ S)}’

and define conductance of graph G to be
#(G) = min ¢g(S).

scv
SAD,V

Computing ¢(G) is called “minimum conductance problem”, and it is famously NP hard. How-
ever, we can connect conductance and eigenvalues.

1.2 Normalized Laplacian Matrix

y Ly )
y' Dy

Let o = min <
yTD1=0

Define x = D%y (note D> is replacing each of the diagonal entries in diagonal matrix D with

square root), we can write y' Dy = 2 z.



Note we are assuming the graph G is connected, then diagonz}l of D is stric;uly non-negative, so
the mapping between  and ¥ is a bijection, which givesus z = D2y @ y =D 22 =y Dy =z'x.
Then we can rewrite v9 as

1 1
) ' D 2LD 2z
Vo = min - .
1 xr X
T (D?I) =0

Definition 1.5. Define Normalized Laplacian Matrix as

N p-:LD 2

We also claim that:

AM(N)=0
Y1 = D21
o . =Nz
27 im0 zTa
= Aa(N)

1.3 Cheeger’s Inequality

Theorem 1.6. y
5 < 0(G) < V21 <2

For example, if 15 = 0.01 = 0.005 < ¢(G) < 0.14
We'll first prove the left hand side, %2 < ¢(G).

Proof. By definition, we know 35 s.t. ¢(G) = ¢ (5) = % and vol(S) < vol(S).

VO

Recall v = min (5;;{;) and 1]D1g = vol(S), we have
y ' D1=0

13L1s = Y (Ls(u) —15(v))”

(u,v)EE
note
2 1, 1g(v) # 15(v) & (u,v) € E(S,S)
1 -1 =
( s(v) S(v)) {0, otherwise
therefore

(u,v)EE
y Ly
y ' Dy’ -
make y satisfy yTD1 = 0, let y = 15 + c1, note we still have y ' Ly = |E(S, S)|.

however it may not satisfy ¥y D1 = 0. In order to

If we set y = 1g, it would minimize

—1/D1 _ vol(5)

.
D1 = - _—
Y 0= ¢=3TD1 = vol(v)

(by previous lemma)

2



y Dy =1{D1g+2c1{D1+ 1" D1

2
1.D1
=15D1s - (1STD1>
vol(9)?
= vol(5) - vcjl((f/))
B vol(S)
= vol(S5) <1 — voI(V)>
> VO|2(S> (since vol(S) < vol(5))
Therefore
y'Ly  |E(S,9)
y'Dy  y'Dy
2|E(S,S)|
vol(S)
= 2¢¢(S)
= 2¢(Q) (by assumption)

-
.y Ly

= vy = min < 2¢(G

> ,Di—oy Dy (C)

= % < ¢(G)
O
Lemma 1.7. Given y s.t. y' D1 =0, we can find a distribution on t with Sy C V s.t. vol(S;) <
vol(V)
5, and

i E(S, S)| _ |2yTLy
Eivol(S;) — \ y"Dy

Let t be independent choices, P; be distribution of ¢, X;, Y; are variables depend on ¢ with
Y: > 0.

We can prove that 3t s.t.
X, _EX _ Y, PX

Y, T EY, X, RY
The proof is left as exercise. This implies that 3¢, s.t.

|E(S6 Sl [2yTLy
vol(S;) ~— | y"Dy

Furthermore, if y was the minimizing vector for v, then

vol(St) Sl

¢s(St)



	Lecture 2 – Clustering
	Clustering of a Graph and Eigenvalue
	Conductance
	Normalized Laplacian Matrix
	Cheeger's Inequality



