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Clustering
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1 Clustering of a Graph and Eigenvalue

Informally, “clustering” is grouping vertices such that there are more connectivity inside each group
compare to between groups.

1.1 Conductance

Definition 1.1. Volume: let S ⊆ V , vol(S)
def
=
∑
v∈S

dv where dv = deg(v) = Dv,v

Lemma 1.2. Define the indicator of set S as

1S(v) =

{
1, v ∈ S
0, otherwise

Then
1TSD1S = vol(S)

Definition 1.3. Define Boundary of S as

E(S, S) = {(u, v)|(u, v) ∈ E, u ∈ S, v ∈ V \ S},

where S is the complement set.

Definition 1.4. Define conductance of S measured in graph G to be

φG(S)
def
=

|E(S, S)|
min{vol(S), vol(V \ S)}

,

and define conductance of graph G to be

φ(G)
def
= min

S⊆V
S 6=∅,V

φG(S).

Computing φ(G) is called “minimum conductance problem”, and it is famously NP hard. How-
ever, we can connect conductance and eigenvalues.

1.2 Normalized Laplacian Matrix

Let ν2 = min
y>D1=0

(
y>Ly
y>Dy

)
.

Define x = D
1
2 y (note D

1
2 is replacing each of the diagonal entries in diagonal matrix D with

square root), we can write y>Dy = x>x.
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Note we are assuming the graph G is connected, then diagonal of D is strictly non-negative, so
the mapping between x and y is a bijection, which gives us x = D

1
2 y ⇔ y = D−

1
2x⇒ y>Dy = x>x.

Then we can rewrite ν2 as

ν2 = min
x>

(
D

1
2 1

)
=0

x>D−
1
2 LD−

1
2x

x>x
.

Definition 1.5. Define Normalized Laplacian Matrix as

N
def
= D−

1
2 LD−

1
2

We also claim that:

λ1(N) = 0

ψ1 = D
1
2 1

ν2 = min
x>ψ1=0

x>Nx

x>x

= λ2(N)

1.3 Cheeger’s Inequality

Theorem 1.6.
ν2
2
≤ φ(G) ≤

√
2ν2, ν2 ≤ 2

For example, if ν2 = 0.01⇒ 0.005 ≤ φ(G) ≤ 0.14
We’ll first prove the left hand side, ν2

2 ≤ φ(G).

Proof. By definition, we know ∃S s.t. φ(G) = φG(S) = |E(S,S)|
vol(S) and vol(S) ≤ vol(S).

Recall ν2 = min
y>D1=0

(
y>Ly
y>Dy

)
and 1>SD1S = vol(S), we have

1>SL1S =
∑

(u,v)∈E

(
1S(u)− 1S(v)

)2
note (

1S(u)− 1S(v)
)2

=

{
1, 1S(v) 6= 1S(v)⇔ (u, v) ∈ E(S, S)

0, otherwise

therefore

1>SL1S =
∑

(u,v)∈E

1[(u, v) ∈ E(S, S)] = |E(S, S)|

If we set y = 1S , it would minimize y>Ly
y>Dy

, however it may not satisfy y>D1 = 0. In order to

make y satisfy y>D1 = 0, let y = 1S + c1, note we still have y>Ly = |E(S, S)|.

y>D1 = 0⇔ c =
−1>SD1

1>D1
= − vol(S)

vol(V )
(by previous lemma)
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y>Dy = 1>SD1S + 2c1>SD1 + c21>D1

= 1>SD1S −

(
1>SD1

)2
1>D1

= vol(S)− vol(S)2

vol(V )

= vol(S)

(
1− vol(S)

vol(V )

)
≥ vol(S)

2
(since vol(S) ≤ vol(S))

Therefore

y>Ly

y>Dy
=
|E(S, S)|
y>Dy

≤ 2|E(S, S)|
vol(S)

= 2φG(S)

= 2φ(G) (by assumption)

⇒ ν2 = min
y>D1=0

y>Ly

y>Dy
≤ 2φ(G)

⇒ ν2
2
≤ φ(G)

Lemma 1.7. Given y s.t. y>D1 = 0, we can find a distribution on t with St ⊆ V s.t. vol(St) ≤
vol(V )

2 , and

Et|E(St, St)|
Et vol(St)

≤

√
2y>Ly

y>Dy

Let t be independent choices, Pt be distribution of t, Xt, Yt are variables depend on t with
Yt ≥ 0.
We can prove that ∃t s.t.

Xt

Yt
≤ EtXt

EtYt
=

∑
t PtXt∑
t PtYt

The proof is left as exercise. This implies that ∃t, s.t.

|E(St, St)|
vol(St)

≤

√
2y>Ly

y>Dy

Furthermore, if y was the minimizing vector for ν2, then

φS(St) =
|E(St, St)|
vol(St)

≤
√

2ν2
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