
CSC 2421H : Graphs, Matrices, and Optimization Lecture 3 : 24 Sep 2018

Cheeger’s Inequality
Lecturer: Sushant Sachdeva Scribe: Muhammed Tahsin Rahman

1 Recall

The conductance of a graph G = (V,E) is defined as

Φ(G) = min
S⊂V
S 6=∅

∣∣∣E(S, S)
∣∣∣

min {vol(S), vol(S)}
, (1)

where S = Sc,
∣∣∣E(S, S)

∣∣∣ =
∑

(u,v)wu,v1[(u, v) ∈ E(S, S)], and vol(S) =
∑

v∈S deg(v). Cheeger’s

inequality states that the conductance is bounded by

ν2
2
≤ Φ(G) ≤

√
2ν2. (2)

ν2 is the second smallest eigenvalue of the normalized graph Laplacian, defined as

ν2 = min
y>D1=0

y>Ly

y>Dy
= λ2(N), (3)

where y ∈ RV , D is the degree matrix, L is the graph Laplacian, and N = D−1/2LD−1/2 is the
normalized graph Laplacian.

In the previous lecture we had proved the left side of eq. 2, and in this lecture we will prove
the right side. To this end, we first state three lemmas; then, we use these lemmas to derive the
bound; finally, we prove the lemmas. We will also begin the next topic on Random Walks.

2 Required Lemmas

Lemma 2.1. Given a vector y ∈ RV s.t. y>D1 = 0, we can find a vector z ∈ RV s.t.

z ≥ 0

z>Lz

z>Dz
≤ y>Ly

y>Dy
, and

vol(supp(z)) ≤ 1

2
vol(V ),

where supp(z) = {v : z(v) > 0}.
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Lemma 2.2. Given a vector z ∈ RV s.t. z ≥ 0, we can sample a scalar t, where St ⊆ V , s.t.
St ⊆ supp(z). Then,

Et[
∣∣∣E(St, St)

∣∣∣]
Et[vol(St)]

≤

√
2
z>Lz

z>Dz
.

Lemma 2.3. Given a distribution over t and associated random variables Xt, Yt s.t. Yt > 0, ∃ t0
s.t.

Xt0

Yt0
≤ Et[Xt]

Et[Yt]
.

3 Cheeger’s Upper Bound

Let y ∈ RV s.t. y>D1 = 0 and apply Lemma 2.1. We obtain z ≥ 0, with vol(z) ≤ 1
2 vol(V ) and

z>Lz
z>Dz

≤ y>Ly
y>Dy

. Now, use this z in Lemma 2.2, sampling t with associated set St ⊆ supp(z), to

obtain vol(St) ≤ 1
2 vol(V ) and

Et[|E(St,St)|]
Et[vol(St)]

≤
√

2 z>Lz
z>Dz

≤
√

2 y>Ly
y>Dy

. Finally, apply Lemma 2.3, in

that ∃ t0 that achieves ΦG(St0) =
|E(St0 ,St0 )|

vol(St0 )
≤
√

2 y>Ly
y>Dy

. To complete the proof plug in the y that

achieves ν2.

4 Proof of Lemmas

4.1 Lemma 2.1

With y>D1 = 0, let

ỹ = y − c1,
V1 = vol({v : ỹ(v) > 0}),
V2 = vol({v : ỹ(v) < 0}).

Note that V1 and V2 are strictly disjoint. As we change c over the real line, the vertices move
from V1 to V2, so there will be some c s.t.

V1,V2 ≤
1

2
vol(V ).

Consider what happens to the ratio y>Ly
y>Dy

.

ỹ>Lỹ =
∑
(u,v)

(ỹ(u)− ỹ(v))2 = y>Ly,

ỹ>Dỹ = y>Dy − 2cy>D1︸ ︷︷ ︸
=0

+ c21>D1︸ ︷︷ ︸
≥ 0

≥ y>Dy, and

ỹ>Lỹ

ỹ>Dỹ
≤ y>Ly

y>Dy
.

Now write ỹ = z+ − z−, where z+, z− ≥ 0; then,

vol(supp(z+)), vol(supp(z−)) ≤ 1

2
vol(V ),
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ỹ>Dỹ =
∑
v

deg(v)ỹ(v)2

= z+
>
Dz+ + z−

>
Dz−.

Note that

ỹ>Lỹ =
∑
(u,v)

(ỹ(u)− ỹ(v))2

=
∑
(u,v)

((z+(u)− z+(v))− (z−(u)− z−(v)))2

≥
∑
(u,v)

(z+(u)− z+(v))2 + (z−(u)− z−(v))2,

since the cross terms of the expansion will always be ≥ 0. Now, with a proof similar to Lemma 2.3
shown in section 4.3,

z+
>
Lz+ + z−

>
Lz−

z+>Dz+ + z−>Dz−
≤ y>Ly

y>Dy
.

One of z+, z− achieves a ratio ≤ y>Ly
y>Dy

.

4.2 Lemma 2.2

Z
a b

0 1

st

Figure 1: Sampling t and
the corresponding St

With z ≥ 0, scale z s.t. max(z) = 1. This scaling is acceptable because
the claim depends on ratios with z and not the absolute values. Now,
sample a threshold t ∈ [0, 1] using the probability density function f(t) =

2t. Note that Pr[t ∈ [a, b]] =
∫ b
a f(t)dt = b2 − a2. This distribution is

picked as a proof trick and does not affect the outcome of Cheeger’s
inequality.

Define St = {v : z(v) > t}. So, picking St depends on t discretely.
If t is between a & b, then Pr[v ∈ St] = b2 − a2. This selection of St is
shown in Figure 1. Next, the denominator of Lemma 2.2

Et[vol(St)] = Et
[∑

v

deg(v)1[v ∈ St]
]
,

=
∑
v

deg(v) Et[1[v ∈ St]]︸ ︷︷ ︸
Pr[v ∈ St] =
Pr[t ∈ [0, z(v)]] =
z(v)2

,

=
∑
v

deg(v)z(v)2

= z>Dz.

For the numerator,

Et[
∣∣∣E(S, S)

∣∣∣] = Et
[∑
(u,v)

1[(u, v) ∈ E(St, St)]

]
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=
∑
(u,v)

Pr[(u, v) ∈ E(St, St)]

=
∑
(u,v)

∣∣∣z(u)2 − z(v)2
∣∣∣ .

Applying Cauchy-Shwartz inequality

(∑
i aibi ≤

√∑
i a

2
i

√∑
i b

2
i

)
gives

∑
(u,v)

∣∣∣z(u)2 − z(v)2
∣∣∣ ≤√√√√√√(

∑
(u,v)

(z(u)− z(v))2

︸ ︷︷ ︸
Laplacian quadratic form

)(
∑
(u,v)

(z(u) + z(v))2),

∑
(u,v)

(z(u) + z(v))2 ≤ 2
∑
(u,v)

(z(u)2 + z(v)2)

= 2
∑
v

deg(v)z(v)2

= 2z>Dz.

Therefore,

Et[
∣∣∣E(S, S)

∣∣∣]
Et[vol(St)]

≤
√

2(z>Lz)(z>Dz)

z>Dz
=

√
2

z>Lz

z>Dz

4.3 Lemma 2.3

Assuming the collection of Xt, Yt is finite,

r = min
t

Xt

Yt
s.t.Yt > 0,

=
X0

Y0
.

The fact that r is a minimum means that

Xt

Yt
≥ r,

Xt ≥ rYt,
Et[Xt] ≥ rEt[Yt]

5 Examples

Given a vector y, how do we get a ‘good’ cut? Consider two examples that we have seen previously,
a single edge between two vertices and a ring graph.
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5.1 Two Vertices Connected by an Edge

We know that Φ(G) = 1. Using Cheeger’s inequality, we first compute the second smallest eigen-
value of the normalized graph Laplacian. Drawing from the first lecture,

ν2 = λ2(D
−1/2LD−1/2)

= λ2(L)

= 2

= 2Φ(G),

showing that the lower bound of Cheeger’s inequality is tight

5.2 Ring Graph

Lemma 5.1. For Rn, define

xk(v) = sin(
2πkv

n
), 0 ≤ k ≤ n

2
, and

yk(v) = cos(
2πkv

n
), 0 ≤ k ≤ n

2
.

∀k, xk, yk are eigenvectors of LRn, with eigenvalues 2(1− cos(2πkn )).

Proof of the above lemma is left as an exercise.
For the simple case of n even,

Φ(Rn) =
2

2.n2
=

2

n

Knowing that D = 2I,

ν2 = λ2(D
−1/2LD−1/2)

=
1

2
λ2(L)

=
1

2
(2− 2 cos(

2π

n
))

= 2 sin2(
π

n
)

= 2(
π

n
)2(1 + o(1)), for large n.

Note that for a tight bound, we would need to take the square root of the above expression, as
proven earlier.

As an exercise, try finding graph cuts using Julia. Use the previous lecture’s formulation and
then use Cheeger’s inequality to make cuts.
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6 Random Walks

a

b

c

e

d

Figure 2: Example of
random walk graph

We will now be looking at undirected graphs that capture reversible Markov
chains. Consider the graph in Figure 2. Start with a peg on vertex a at time 0.
Then, at time 1, pick uniformly between neighbours to move to; in this case,
Pr[v = b at t = 1 | v = a at t = 0] = Pr[v = c at t = 1 | v = a at t = 0] =
0.5. If the graph is weighted, scale the transition probabilities using the
weights. The resulting sequence of vertices that have been visited over time
is called the transcript of the random walk.

Given a graph and initial vertex, we are interested in answering questions
such as,

• What is the distribution over vertices after a given number of steps?

• Is there a stationary distribution?

• How quickly do we converge?

The state evolution can be quantified using knowledge of the graph structure. At time t, define
pt ∈ RV ,pt ≥ 0, and 1

>pt =
∑

v pt(v) = 1; let

p0(v) =

{
1 if v = a

0 else
(starting at a),

pt(v) = Pr[the random walk is at vertex v at time t],

pt+1(v) =
∑
u:(u,v)

1

deg(u)
pt(u) (unweighted).

For weighted graphs, deriving the following is left as an exercise:

Pr[v at t+ 1 | u at t] =
w(u, v)∑

z:(u,z)w(u, z)
=

w(u, v)

deg(u)︸ ︷︷ ︸
weighted deg

,

pt+1(v) =
∑
u:(u,v)

w(u, v)

deg(u)
pt(u),

pt+1 = AD−1pt.
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