
1 Matrix Multiplicative Update Method [Steurer 09]

Steurer has been assistant professor at all the important places: Max Plank Institute, Princeton, Microsoft
Research. He’s an assistant professor at Cornell. The matrix multiplicative update method is a technique
for approximately solving semidefinite programs. To review, an SDP takes the following form:

minC •X
st.Ai ·X = bi∀i

X � 0

The method works on a restricted form of the problem. Let D = 1
nI. Let χ = {X|X � 0, D •X = 1}.

Let χ≥α ⊆ χ be the set of X for which

C •X ≥ α
Ai ·X = bi∀i

We want to find an X ∈ χ that is “close” to χ≥α. To generalize this problem to the form above, we can just
conduct a binary search.

We also assume the existence of a ρ-bounded δ-separation oracle that can quickly determine, for a given
X ∈ χ, whether X ∈ χ≥α. Formally, a δ-separation oracle for χ≥α is an algorithm that, given a matrix
X ∈ χ, says one of the following things:

• YES. The algorithm determines that X is close to the set χ≥α.

• NO. The algorithm finds a hyperplane (A, b) that separates X from χ≥α by a δ margin such that
A •X ≤ b− δ but ∀X ′ ∈ X.X •X ′ ≥ b.

The separation oracle is ρ-bounded if every A and b in the NO case satisfy

ρD � A− bD � ρD

.
Now for the algorithm. Start with an arbitrary X ∈ χ. Call the oracle. If X ∈ χ≥α then we’re good.

Otherwise, we know that χ≥α is in the direction of A, so we can move a little bit in that direction and try
again.

More formally, the algorithm produces a series X1, Y1, . . . , XT , Yt of matrices. Xt is our current guess
for X at round t, and Yt is the error at round t, shifted to be PSD. We define Y<t := Y1 + Y2 + · · ·+ Yt−1.
Y<0 = 0. Let the magical update function Eε(Y) := exp(εY)/tr(exp(εY)). For t from 1 to T :

1. Call the oracle on input Xt := D−1/2Ee(Y<t)D
−1/2.

2. If the oracle says YES, stop.

3. Otherwise, the oracle provides a δ-separating hyperplane At •Xt ≤ bt − δ.
Set Yt = 1

2ρD
−1/2(At − btD + ρD)D−1/2.

Note that Xt and Yt are symmetric, Xt ∈ χ, and 0 � Yt � I for all t.

2 Proving the Runtime

We’ll start with a theorem that will become useful to us later.

1

Theorem 1. Let ε > 0 be small enough and let Y1, . . . , YT be a sequence in [0, I] ⊆ Mn, where Mn is the
set of symmetric n-by-n matrices over the reals. Then

λmax(Y<T+1) < (1 + ε)

T∑
t=1

X ′t • Yt +
1

ε
log n

where X ′t = Eε(Y<T).

Proof. We know
eελmax(Y1+···+YT) = λmaxe

ε(Y1+···+YT)

by looking at the spectral decomposition of Y1 + · · ·YT . As the trace is the sum of the eigenvalues,

λmaxe
ε(Y1+···+YT) ≤ tr(eε(Y1+···+YT))

The Golden-Thompson inequality says that tr(eA+B) ≤ tr(eAeB). Therefore:

tr(eε(Y1+···+YT)) ≤ tr(eε(Y1+···+Yt−1)eεYt)

Now, ∀x ∈ [0, ε], x ≤ 1 + (eε − 1)x. By diagonalization, for PSD M such that 0 � M � εI, exp(M) ≤
I + (eε − 1)M .

tr(eε(Y1+···+Yt−1)eεYt) ≤ tr(eε(Y1+···+YT−1)(I + (eε − 1)YT))

This can be rewritten as
= (1 + (eε − 1)XT • YT)tr(eε(Y1+···+YT−1))

We know 1 + x ≤ ex, so this is less than

e(e
ε−1)XT •YT tr(eε(Y1+···+YT−1))

Now, we can keep on doing this trick for each of the Yi. In the base case, tr(e0) = tr(I) = n. Therefore, the
expression is less than

ne(e
ε−1)

∑T
t=1XT •YT

Using the series approximation, eε − 1 = ε+ ε2/2 +O(ε3) < ε+ ε2 for small enough ε. We get

eελmax(Y1+···+Yn) < elogn+(ε+ε2)
∑T
t=1XT •YT

λmax(Y1 + · · ·+ YT) < (1 + ε)

T∑
t=1

Xt • Yt +
1

ε
log n

Theorem 2. Let ε ≤ δ/2ρ. If a ρ-bounded δ-separation oracle finds a separating hyperplane for T ≥
2ε−2 log n iterations, then χ≥α is empty.

Proof. Let X ′t := Eε(Y<t). We know At •X ≤ bt − δ because the oracle found a separating hyperplane.

X ′t • Yt = D1/2XtD
1/2 • 1

2ρ
D−1/2(At − btD + ρD)D−1/2 = Xt •

1

2ρ
(At − btD + ρD) ≤ 1

2
− δ

2ρ

Using Theorem 1, this means

λmax(Y1 + · · ·+ YT) < (1 + ε)

(
1

2
− δ

2ρ

)
T +

1

ε
log n ≤ 1

2
T −

(
δ

2ρ
− ε

2

)
T +

1

ε
log n ≤ 1

2
T

On the other hand, for every X ∈ χ≥α

Yt •D1/2XD1/2 =
1

2ρ
(At − btD + ρD) •X ≥ 1

2

For symmetric A, we know maxX A •X is just the maximum eigenvector of A, as long as X is PSD and has
trace 1. Therefore

λmax(Y1 + · · ·+ YT) ≥ (Y1 + · · ·+ YT) •D1/2XD1/2 ≥ T/2
This contradicts the upper bound on λmax. There can be no X ∈ χ≥α; χ≥α is empty.

2

3 Oracle for Max Cut

To show the algorithm in a more concrete setting, let’s use it to solve the classic Max Cut problem on
G = (V,E). We will only consider d-regular graphs. We will normalize the graph so the sum of all edge
weights adds to 1. This means each of the edges has weight 2/nd. We’ve seen the associated SDP. Let
Xij = vTi vj .

max
∑

(i,j)∈E

1

4

(
2

nd

)
‖vi − vj‖2

st. Xii = 1, X � 0

Therefore, our set χ≥α will include all X such that

∑
(i,j)∈E

1

4

(
2

nd

)
‖vi − vj‖2 ≥ α

Xii = 1,

X ≥ 0

To find the max cut, we can do a binary search for the largest value of α such that χ≥α is nonempty.
This gives the optimal solution to the canonical SDP relaxation, to which we can apply Goemans-Williamson
randomized rounding. As we established before, we can check if χ≥α is empty by running the algorithm for
at most 2e−2 log n iterations. But to run the algorithm, we need an oracle.

We can express the objective function as a single Frobenious product.

max
∑

(i,j)∈E

1

2
gij(1−Xij)

= max
∑
i,j∈V

1

4
gij(1−Xij)

= max
1

4

∑
i,j∈V

gij −
∑
i,j∈V

gijXij

= max
1

4
(D −G) •X

= max
1

4
L •X

Here, D = 1
nI, G is the adjacency matrix, and L is the Lapacian matrix, given by

Lij =

{∑
k gik if i = j

−gij if i 6= j

Checking the first constraint is therefore just a matter of taking a product. The second constraint Xii = 1
is more difficult, as we have to keep ρ bounded. We will use the following, more complicated condition.

Let S1 := {i|i > 1 + ε}, S2 := {i|1− ε ≤ Xii ≤ 1 + ε}, S3 := {i|i < 1− ε}. Let DS be D with all columns
outside of S set to 0, let d(S) be the fraction of nodes in S, and let δ = ε2. Our oracle will return YES if

(DS1 −DS3) •X < d(S1)− d(S3) + δ and
∑

(i,j)∈E
1
4

(
2
nd

)
‖vi − vj‖2 ≥ α− δ. Otherwise, it will output NO,

and return the violated constraint. All elements in χ≥α satisfy our constraints, and whenever we output
NO, we provide a δ-violated constraint.

Now, the oracle could output YES for X /∈ χ>α. In this case, the X we provide the oracle will have some
vectors that do not have length 1. It’s easy to construct an X ′ where the vectors v′i do have unit length

3

though:

X ′ij =

Xij/

√
XiiXjj if i, j ∈ S2

1 if i = j /∈ S2

0 otherwise

We scale vectors with lengths in S2 to have unit length, and throw away everything else, replacing vectors that
are too long or short with new ones perpendicular to all other vectors. For this X ′, the value of the objective
function is only O(ε) away from the value for the original X. This means we can apply Goemans-Williamson
rounding on vectors in X ′ and still get a good cut.

Theorem 3. If the oracle outputs YES for input X then∑
(i,j)∈E

1

4

(
2

nd

)
‖vi − vj‖2 ≤

∑
(i,j)∈E

1

4

(
2

nd

)∥∥v′i − v′j∥∥2 +O(ε)

where the vi are the vectors of X and the v′i are the vectors of X ′, defined as above.

Proof. We know the constraint was satisfied, so

(DS1
−DS3

) •X < d(S1)− d(S3) + ε2

We can rewrite this as ∑
i∈S1

(xii − 1) +
∑
j∈S3

(1−Xjj) < nε2

But by the definitions of S1 and S2, we also know

ε(|S1|+ |S2|) ≤
∑
i∈S1

(xii − 1) +
∑
j∈S3

(1−Xjj)

This means |S1| + |S3| ≤ ε ∗ n. With this in mind, we can divide the sum on the left hand side into three
parts.

Case 1: i, j ∈ S1: If nodes i and j are both in S1, edges between them contribute at most O(ε) to the

value of the objective function. We know ‖vi − vj‖2 ≤ 2(‖vi‖2 + ‖vj‖2), so

2

dn

∑
(i,j)∈E

‖vi − vj‖2 ≤
2

dn
· 2 · d ·

∑
S1

Xii

But (1/n)
∑
S1
Xii = DS1 •X. Since the oracle returned YES, we can use the constraint on DS1 .

DS1
•X ≤ d(S1) + δ +DS3

•X

Because DS3
•X, δ and d(S1) are O(ε),

DS1
•X ≤ d(S1) + δ + |S3|/n ≤ O(ε)

Case 2: i ∈ S1, j /∈ S1: If exactly one of i and j is in S1, the term that is not in S1 will be bounded by
1 + ε.

2

dn

∑
(i,j)∈E

‖vi − vj‖2 ≤
2

dn
· 2 · d ·

∑
S1

(1 + ε) +Xii

But we can use the same bound on (1/n)
∑
S1
Xii as before to say this is O(ε).

4

Case 3: i ∈ S3, j /∈ S1: If neither i nor j is in S1, ‖vi − vj‖2 ≤ 4(1 + ε). If at least one of the two is in
S3, we get

2

dn
· 2 · d · 4(1 + ε) · |S3| ≤ O(ε)

Case 4: i ∈ S2, j ∈ S2: For i and j in S2, Xij −X ′ij ≤ O(ε) by the definition of S2. Using the previous
three cases, this meas that∑

(i,j)∈E and i,j /∈S2

1

4

(
2

nd

)
‖vi − vj‖2 ≤ O(ε) +

∑
(i,j)∈E and i,j∈S2

1

4

(
2

nd

)∥∥v′i − v′j∥∥2
∑

(i,j)∈E

1

4

(
2

nd

)
‖vi − vj‖2 ≤

∑
(i,j)∈E

1

4

(
2

nd

)∥∥v′i − v′j∥∥2 +O(ε)

4 Calculating the Exponential

While the update rule
Xt := D−1/2 exp(εY<t)/tr(exp εY<t)D

−1/2

allows the algorithm to quickly converge on a member of χ≥α, it requires calculating a matrix exponential.

The matrix exponential is defined as eX =
∑∞
i=0

Xi

i! . Computing an infinite series is difficult. We approximate

the infinite series by only considering the first r + 1 terms. Let P (Y) :=
∑r
i=0

(
εY
i!

)i
. Then we can use an

approximation of the update rule
X̂t := cD−1/2P (εY<t)D

−1/2

where the multiplier c is chosen to make D • X̂t = 1.
If we choose high enough r, this approximation will be exponentially close. In the scalar case, consider

x ∈ [0, β]. ∣∣∣∣∣ex −
r∑
i=0

xi

i!

∣∣∣∣∣ ≤
∞∑
r+1

xi

i!
≤

∞∑
i=r+1

βi

i!

We know that i! ≤ ((i+ 1)/e)i+1. Therefore, for r ≥ 2eβ

∞∑
i=r+1

βi

i!
≤

∞∑
i=r+1

(
eβ

r

)i
≤ 2−r

5 Reducing Dimensionality

When we construct a new X to test for membership in χ≥α, we should remember that each Xii represents
the dot product of two vectors, so X = V TV for some vectors V . In particular, V = X1/2. As a further
optimization, it would be nice if we could reduce the dimensions of the vectors in V . We just need the lower-
dimensional approximations to have approximately the same distances between them. But we know a way
to reduce dimensionality without changing the distance between vectors very much: Johnson Lindenstraus!

To remind everyone of the main Lemma in Johnson Lindenstraus, let R be a d× n matrix such that Rij
is an independent unit Gaussian N(0, 1). Then for a fixed vector v ∈ Rn, for d = O(1/ε2 log(1/δ),

Pr[(1− ε) ‖v‖ ≤ ‖Rv‖√
d
≤ (1 + ε) ‖v‖] ≥ 1− δ

5

To approximate the vectors in V , therefore, we can use a d × n Gaussian matrix Φ, with each entry
chosen independently from N(0, 1/δ). Then ΦV approximates the vectors in V in d dimensions. Then if
X̂t = cD−1/2P (εY<t)D

−1/2, we can construct an approximate update rule for X̂ ′t:

(X̂)′t := (V ′t)TV ′t

= (ΦVt)
T (ΦVt)

= cD−1/2(ΦP (ε(1/2)Y<t))
T (ΦP (ε(1/2)Y<t))D

−1/2

= D−1/2P (ε(1/2)Y<t)Φ
TΦP (ε(1/2)Y<t)D

−1/2

6

