
CPSC 665 : An Algorithmist’s Toolkit Lecture 1 : 16 April 2015

Perfect Matchings in Regular Bipartite Graphs in O(n log n) Time
Lecturer: Sushant Sachdeva Scribe: Rachel Lawrence

1. Preliminaries

Let G = (P,Q,E) be a d-regular bipartite such that P and Q are disjoint vertex sets and
E ⊂ P ×Q. Let n = |P | be the number of vertices in P , and let m = |E| be the number of edges
in G.

Fact 1.1. m = nd and |P | = |Q| = n as a consequence of regularity.

Definition 1.2 (Matching). A matching in graph G is a set of edges in G such that no two
edges share a common vertex. A matching is perfect if it consists of exactly n edges. Otherwise,
it is partial.

Fact 1.3. G can be decomposed into exactly d perfect matchings. This is a direct consequence of
Hall’s marriage theorem [Bol98] which I will not prove here, since it is included in many basic
Algorithms courses).

Definition 1.4 (Augmenting path). Given a matching M on graph G, an augmenting path
is a path in G such that the start and endpoints of the path are unmatched vertices, and the path
alternately contains edges that are and are not in the partial matching.

Definition 1.5 (Symmetric difference). The symmetric difference of two edge sets P and
M , denoted P∆M , is defined as (P −M) ∪ (M − P).

Fact 1.6. The symmetric difference of a partial matching M with augmenting path P gives a new
matching M∗ with exactly one more edge than M .

2. Background

The standard algorithm for general (not necessarily regular) bipartite graphs is O(m
√
n) [HK73].

For regular bipartite graphs, deterministic algorithms exist showing that perfect matchings are
computable in O(m) time, and that if the graph is d-regular, this bound can be improved to

O(min{m, n2

d }) [GKK10]
Our focus will be on a randomized algorithm by Goel, Kapralov, and Khanna [GKK09] which
finds a perfect matching in a d-regular graph in O(n log n) time, both in expectation and with high
probability. Note that just outputting a matching takes O(n) time, so this is intuitively quite a
good bound!

After describing and proving the algorithm and its runtime, we will also see that there exists
an Ω(nd) lower bound on finding perfect matchings in d−regular bipartitie graphs using determin-
istic algorithms; in other words, that randomization is the only way to achieve a bound as low as
O(n log n) [GKK09].

1

3. The Randomized Matching Algorithm

Algorithm Sketch: The algorithm will find successive augmentations for a matching, by taking
random walks on a modified ”matching graph” that encodes the current partial matching.

Definition 3.1 (Matching graph). For a partial matching M in G that leaves 2k vertices un-
matched, the matching graph H is created from G by the following procedure:

(1) Orient the edges of G from P to Q
(2) Contract each pair of vertices (u, v) ∈M into a single ”supernode”
(3) Add source node s connected by d parallel edges to each unmatched vertex in P ; orient all

such edges away from s
(4) Add sink node t connected by d parallel edges to each unmatched vertex in Q; orient all

such edges towards t

Fact 3.2. The following equations can be verified as a simple exercise.

• # nodes in H = n+ k + 2
• # edges in H = n(d− 1) + k(2d+ 1)
• For all vertices v ∈ H such that v 6= s and v 6= t, the in-degree of v = the out-degree of v.

Lemma 3.3. Any path from s to t in H gives an augmenting path in G with respect to M .

Proof. First, we check that the path starts and ends on an unmatched vertex: this is clearly true,
because from the construction of H, the only edges accessible from s are unmatched vertices in P ,
and similarly, the only edges from which t is accessible are unmatched vertices in Q.

Next, consider whether the path alternates edges that are and are not in the matching. First,
note that any edge that is in the matching has been condensed into a supernode in H; therefore,
we ask instead whether it is possible to visit two supernodes in a row. It is not, because to visit
two supernodes along one path requires an edge between them, and this edge shares a vertex with
an edge of the matching, so it cannot itself be a part of the same matching.

Furthermore, is it possible to visit two non-supernode vertices in a row? The answer is again
no, because of all the edges in H, vertices in P only have edges directed into Q, and vertices in Q
only have vertices directed to t. Therefore, it is impossible to create a path that travels between
non-supernode vertices in P and Q more than once. This completes the proof. �

Figure 1. An example Matching Graph

We next examine a proposition that will guide the ran-
dom walk portion of the algorithm:

Proposition 3.4. Given a d-regular bipartite graph G,
partial matching M that leaves 2k vertices unmatched,
and matching graph H constructed from M and G, the
expected number of steps before a random walk from
s arrives at t is at most 2 + n

k .

Proof. First, construct H∗, a graph identical to H
with the exception that vertices t and s are con-
densed into a single vertex s∗. Note that now, the
in- and out- degree of each vertex of H∗ are equiva-
lent.

Next, construct a random walk starting at s∗; we wish
2

to know the expected return time to s∗ in the Markov
chain defined by H∗ (noting that H∗ is positive recurrent

because it has balanced in- and out- degrees, and is directed). From a basic course in Stochastic
Processes: Expected return time in a positive recurrent Markov Chain = 1

the stationary measure .

Therefore, since the stationary distribution at vertex i is

πi =
deg(i)∑

j∈V (H∗) deg(j)

Then the expected return time to s∗ of the random walk is

1

πi
=

∑
j∈V (H∗) deg(j)

deg(s∗)
=

(n− k)(d− 1) + 2kd+ kd

kd
≤ n

k
+ 2

which completes the proof. �

Now, the algorithm and its correctness follow easily: a random walk from s to t, which then
defines an augmenting path to improve the current matching, can be found in at most 2 + n

k steps
on average.

To define the algorithm:

Algorithm 1 Truncated-Walk Subroutine

Require: vertex u, integer b > 0
if u = t then

return SUCCESS
end if
v ← the other endpoint of uniformly randomly chosen outgoing edge from u
b← b− 1
if b ≤ 0 then

return FAIL
end if
return Truncated-Walk(v,b)

Algorithm 2 Matching Algorithm

Require: G = (P,Q,E)
j ← 0
Mo ← ∅
while Perfect matching not yet found do
bj ← 2(2 + n

n−j)

while Truncated-Walk is unsuccessful do
Run Truncated-Walk(s, b+ j)

end while
p← the successful path from Truncated-Walk after loops are removed
Mj+1 ←Mj∆P
j ← j + 1

end while
return Mj

3

4. Time Complexity of the Algorithm

Theorem 4.1. The previously described algorithm for finding a perfect matching in G runs in time
O(n log n) both in expectation, and with high probability.

We will build up to the proof of this theorem with 3 lemmas.

Lemma 4.2. The Truncated-Walk subroutine succeeds with probability ≥ 1
2 .

Proof. From an earlier lemma, we have that E(steps until successful path found)≤ 2 + n
k .

Using Markov’s Inequality:

P(number of steps needed ≥ b) ≤ E(number of steps needed)

b
≤

2 + n
k

b

⇒ P(T-W succeeds) ≥ 1−
2 + n

k

b
= 1−

2 + n
n

2(2 + n
n−j)

=
1

2
when j=0

�

Now, let Xj be the time taken by the jth augmentation, and let Yj be independent and expo-

nentially distributed, with mean µj :=
bj
ln(2)

Lemma 4.3.
P[Xj ≥ qbj] ≤ P[Yj ≥ qbj]

Proof. From Lemma 4.2, P[Xj ≥ qbj] ≤ 2−q.

By definition of the exponential distribution, P[Yj ≥ qbj] = e
−qbj
µj = e

−qbj ln(2)

bj = 2−q ∀ q > 1 �

Using Lemma 4.2, we have that P[Xj ≥ x] ≤ P[Yj ≥ x] for all x > bj . So from here on, we can
consider Y instead of X in finding the upper bound for runtime.

Proposition 4.4. Let Y :=
∑

0≤j≤n−1 Yj. Then Y ≤ cn log n with high probability for c large
enough. Since this gives an upper bound for total time taken by all n augmentations, this would
prove theorem 4.1.

Proof. Let µ := E[Y]
Using Markov’s Inequality, for any given t and δ both > 0,

P[Y ≥ (1 + δ)µ] ≤ E[etY]

et(1+δ)µ

And if t < 1
µ , for any j,

E[etYj] =
1

µj

∫ ∞
0

etxe
−x
µj =

2

1− tµj
And so, because the Yj ’s are independent,

⇒ E[etY] =

n−1∏
j=0

1

1− tµj

⇒ P[Y ≥ (1 + δ)µ] ≤
∏n−1
j=0

1
1−tµj

et(1+δ)µ
=

e−t(1+δ)µ∏n−1
j=0 (1 + tµj)

Now, we are almost done. Observing that µn−1 > µn−1 > · · · , define t := 1
2µn−1

, noting that this

value still satisfies t < 1
µj

and t > 0 for all j. Then we have that

(1− tµj) ≥ e−tµj ln(4)
4

because 1− x ≥ 1
4

x
holds for x ∈ [0, 12] and µjt ≤ 1

2 .

Plugging this back into the previous equation:

P[Y ≥ (1 + δ)µ] ≤ e
− (1+δ)µ

2µn−1∏n−1
j=0 e

−tµj ln(4)
= e

−(1+δ−ln4)µ
2µn−1

Finally, we note that, for the nth harmonic number H(n),

µ =
2n

ln2
+ (µn−1 −

2

ln2
)H(n) ≥ µn−1H(n) ≥ µn−1(ln(n))

since

µ =
n−1∑
j=0

(4 +
2n

n− j
= 4n+ 2nH(n)

And so, since we have seen that µ
µn−1

≥ H(n) ≥ ln(n), µ is O(n log n) and

P[Y ≥ (1 + δ)µ] ≤ e
−(1+δ−ln4)µ

2µn−1 ≤ n
−(1+δ−ln4)

2

This gives us the required high-probability bound. �

5. An Ω(nd) Lower Bound for Deterministic Algorithms

Theorem 5.1. For any positive integer d, any deterministic algorithm to find a perfect matching
a d-regular bipartite graph requires Ω(nd) queries to the adjacency matrix of the graph, where the
ordering of edges in the adjacency array is chosen by an adversary.

Definition 5.2 (Canonical Bipartite Graph). A canonical bipartite graph is a graph G(P ∪
{t}, Q ∪ {s}, E) such that:

• The vertex set P = P1 ∪ P2 and Q = Q1 ∪Q2 where |Pi| = |Qi| = 2d for i = 1, 2
• Vertex s is connected to an arbitrary set of d distinct vertices in P1, and vertex t is connected

to an arbitrary set of d distinct vertices in Q2

• G contains a perfect matching M ′ of size d connecting a subset Q′1 ⊂ Q1 to a subset P ′2 ⊂ P2

where |Q′1| = |P ′2| = d
• The rest of the edges in E connect vertices in Pi to Qi for i = 1, 2 to make the degree of

each vertex in G exactly d

Figure 2. An example Canonical Bipartite Graph

Proof. To prove this, we will construct a family G(d) of d-regular bipartite graphs with O(d) ver-
tices each, such that each graph in G(d) is a canonical graph. We then want to show that there is
an Ω(d2) lower bound on queries to graphs drawn from G(d). This will prove the claim, since we
can take Θ(nd) disjoint copies of canonical graphs to create a d-regular graph on n vertices.

Let A be a deterministic algorithm for finding a perfect matching in graphs in G(d). We will
5

analyze a ”game” between A and an ”adaptive adversary” A. The adversary tries to maximize the
number of edges A examines before the perfect matching is found, while A tries to find an edge in
M ′ by submitting queries to A about edge locations in the following manner:

• Beginning with a canonical graph G, A reveals s, t, the partition of vertices into Pi and Qi
(for i = 1, 2), and all edges (s, p) for p ∈ P1 and (q, t) for q ∈ Q2 at no cost to A.
• Whenever A probes a new location in the adjacency array ofu ∈ (P ∪ Q), this is counted

as a query Q(u) to A.
• A responds by giving A a vertext v that has not yet been revealed as adjacent to u

Definition 5.3 (Free vertex). A vertex of graph G is free if its degree is < d.

Lemma 5.4. Let Gr(P ∪ {t}, Q ∪ {s}, Er) be a bipartite graph such that

(1) s is connected to d distinct vertices in P1 and t is connected to d distinct vertices in Q2

(2) All other edges in Gr connect vertices in Pi to vertices in Qi for some i ∈ (1, 2). (Note that
together, these comprise all the edges of a canonical graph except those in M ′)

(3) The degree of every vertex is ≤ d
(4) ∃ at least d+ 1 free vertices each in both Q1 and P2

(5) ∃ u ∈ Pi and v ∈ Qi for some i ∈ (1, 2) such that (u, v) /∈ Gr
The ∃ a canonical graph G(P ∪{t}, Q∪{s}, E) ∈ G(d) such that Er∪ (u, v) ⊂ E iff u, v have degree
< d in Gr.

Proof. If either u or v have degree d, adding (u, v) violates regularity.

If u, v have degree < d, define G′ to be Gr plus the edge (u, v). The degree of every vertex in
G′ is still ≤ d. Now, to see how G′ can be extended to a d-regular graph:

Add the perfect matching M ′ of size d to G′ connecting d free vertices in Q1 to d free vertices
in P2 (we know these vertices exist since there were at least d+ 1 free originally, and that number
decreased by at most one in adding a single extra edge.

Now, the total degree in Pi = the total degree in Qi (for i ∈ (1, 2)). So, it is possible to pair
up vertices between Pi and Qi until every vertex has degree d. This is now a canonical graph
∈ G(d). So, Er ∪ (u, v) ⊂ E where E is the edge set of a canonical graph ∈ G(d). �

Finally, we can use this fact to define a strategy for the adversary.

5.1. Adversary Strategy: For each vertex u, A keeps a list N(u) of all vertices that are both
adjacent to u and already revealed to A.

Note that we can assume A never submits a query about a vertex for which |N(u)| = d, since
in this case it already knows all of u’s neighbors – so A only ever submits queries regarding free
vertices.

At any step, define Gr to be the graph revealed to A so far.

Definition 5.5 (Evasive mode). We will say that the adversary is in evasive mode if Gr satisfies
(1) through (4) of lemma 5.4; that is, if no edges of matching M ′ have been revealed to A yet.

Observe that the game starts in evasive mode, and at some point A is forced to switch to non-
evasive mode for the remainder of the game. Thus we define the strategy that while evasive mode
is still possible, A responds to query Q(u) for u ∈ Pi by returning a free vertex v ∈ Qi such that
v /∈ N(u) (or vice versa if u ∈ Qi). A then updates N(u) and N(v).

6

By Lemma 5.4, when the game becomes non-evasive, there exists a canonical graph G ∈ G(d)
that contains the graph Gr revealed so far as a subgraph. After this point occurs, the adversary
answers queries arbitrarily.

Lemma 5.6. A makes ≥ d2 queries before nonevasive mode begins

Proof. In evasive mode, A always answers in such a way that (1) through (3) of lemma 5.4 are met.
However, eventually (4) will fail when the free vertices run out. Each query contributes 1 to the
degree of 1 vertex in Q1 or P2. Free vertices have degree < d and Q1 and P2 start with ≥ d + 1
free vertices each, so to deplete the free vertices takes ≥ d2 queries.

Note that A cannot name a matching until after evasive mode ends, so the time for A to find
a matching in this scheme is ≥ Ω(d2) as desired. �

This completes the proof of the proposition, and so we have proven theorem 4.1. �

References

[Bol98] Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business Media,
1998.

[GKK09] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect matchings in o(n log n)
time in regular bipartite graphs. CoRR, abs/0909.3346, 2009.

[GKK10] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect matchings via uniform
sampling in regular bipartite graphs. ACM Transactions on Algorithms (TALG), 6(2):27,
2010.

[HK73] John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973.

7

	Lecture 1 – Perfect Matchings in Regular Bipartite Graphs in O(nlogn) Time
	1. Preliminaries
	2. Background
	3. The Randomized Matching Algorithm
	4. Time Complexity of the Algorithm
	5. An (nd) Lower Bound for Deterministic Algorithms
	5.1. Adversary Strategy:

	References

