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Notation: λ1(A) = largest eigenvalue of A.
Motivation: The largest eigenvalue tells us the spectrum of a matrix and thus

can be somewhat useful. More crucially for the adjacency matrix of a graph, we
know exactly that the all one’s vector is the largest eigenvector, and thus by working
orthogonal to this vector we can approximate the second largest eigenvalue of the
graph, which tells us how well connected the graph is and how nodes are clustered.

1 Power Method

Theorem 1.1. Given a symmetric matrix A ∈ Rn×n an error parameter δ > 0 and
k > 1

2δ
log(9n/4), the following holds with probability at least 1/2 over unit vectors v

chosen uniformly at random. ∥∥Ak+1v
∥∥

‖Akv‖
≥ (1− ε)|λ1(A)|

Proof. Let u1...un be the orthonormal eigenbasis of A. We can write v in this eigen-
basis as v =

∑
αiui. Fact: with probability at least 1/2 |α1| ≥ 2
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We now use Hölder’s inequality. Recall this is |w · x| ≤ ‖w‖p ‖x‖q for 1
p

+ 1
q

= 1.
Choosing the values
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We have then that ∥∥Akv∥∥2 =
∑
i
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iλ
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=
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Note that
∥∥Ak+1v

∥∥2/k+1 ≥ α
2/k+1
1 λ21 as the right hand side is just a single term

from the left hand side. Thus the inequality holds when we multiply by the quotient
of these values (as it is greater than 1).

∥∥Akv∥∥2 ≤ ∥∥Ak+1v
∥∥2k/k+1 ·

∥∥Ak+1v
∥∥2/k+1

α
2/k+1
1 λ21

=

∥∥Ak+1v
∥∥2

α
2/k+1
1 λ21

Rearrange to ∥∥Ak+1v
∥∥

‖Akv‖
≥ α

2/k+1
1 λ21

Substitute in k + 1 ≥ 1
2δ

log(9n/4) to show that |α1|1/k+1 ≥ e−δ ≥ 1− δ. [1]

2 Lanczos method

Theorem 2.1. Given a symmetric PSD matrix A ∈ Rn×n, and a parameter δ > 0,
the Lanczos method after k iterations for k = O(1/

√
δ · log n/δ), outputs a value µ ∈

[(1−δ)λ1(A), λ1(A)] with constant probability. The running time is O((tA+n)k+k2)

This bound was first proven by [3, Kucźynski, Woźniakowski 1992]. The proof
below is from [2, Sachdeva, Vishnoi 2014] and uses Chebyshev polynomials like in
Conjugate Gradient.

Summary: We compute an orthonormal basis for our Krylov subspace, and use
that to calculate T . We can then calculate the largest eigenvalue of T and this turns
out to be close to λ1 = λ1(A) for random v and appropriate k.

Fact: For a symmetric matrix A it’s largest eigenvalue is characterized as follows

λ1(A) = max
w 6=0

w>Aw

w>w

Similar to conjugate gradient we will work in the Krylov subspaceK = Span{v,Av, ...vAkv}.
The intuition is that within this subspace we can work with A restricted to this sub-
space, and the largest eigenvalue of that matrix is not far from λ1. By working only
in the subspace we can do this relatively quickly.
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Now unlike conjugate gradient we will actually compute an orthonormal basis for K.
We will later show this can be done in O((tA +n)k) operations. For now say we have
such a basis {v0...vk}. Let V be the n×k+1 matrix with column i = vi. Note V V > is

the orthogonal projection onto K. Let T
def
= V >AV . This is the operator A restricted

to ‖. Note that for all w ∈ K, w = V V >w. Thus we have

w>Aw = w>V V >AV V >w = (w>V )T (V >w)

Thus the Rayleigh quotient of w with respect to A is the same as the Rayleigh
quotient of V >w with respect to T . Noting the as w ranges over K, V >w ranges over
Rk+1 we have λ1(T ) ≤ λ1.

Note: the analysis below is purely for the showing that our algorithm produces
a good approximation. After computing V ,T, and λ1(T ) the algorithm just returns
λ1(T ). By our Rayleigh quotient definition we have

λ1(T ) = max
z∈Rk+1

z>Tz

z>z
= max

w∈K

w>V TV >z

z>z
= max

w∈K

w>Aw

w>w

Because w ∈ K = Span{v, ..., Akv} we have w = p(A)v for some p ∈
∑

k.

λ1(T ) = max
p∈

∑
k

v>p(A)Ap(A)v

v>p(A)2v

Writing v =
∑
αiui, ui eigenvectors of A (and p(A) etc.)

λ1(T ) = max
p∈

∑
k

∑
i λip(λi)

2α2
i∑

i p(λi)
2α2

i

Now want to bound how well λ1(T ) approximates λ1. We have

1− λ1(T )

λ1
= 1− max

p∈
∑

k

∑
i λi/λ1p(λi)

2α2
i∑

i p(λi)
2α2

i

≤ 1−
∑

i λi/λ1p(λi)
2α2

i∑
i p(λi)

2α2
i

=

∑
i(1− λi/λ1)p(λi)2α2

i∑
i p(λi)

2α2
i

Like in the power method we have α2
1 ≥ 1/9n with probability 1/2. Split sum into

λ ≥ (1− δ)λ1 and less.∑
i(1− λi/λ1)p(λi)2α2

i∑
i p(λi)

2α2
i

≤ δ +

∑
λi<(1−δ)λ1(1− λi/λ1)p(λi)

2α2
i∑

i p(λi)
2α2

i

≤ δ + 9n sup
λ∈[0,(1−δ)λ1]

p(λ)2

p(λ1)2

Note that for the choice of polynomial p(λ) = (λ/λ1)
s for s = d1/2δ · log 9n/δe we

get our relative error is

δ + 9n sup
λ∈[0,(1−δ)λ1]

(
λ

λ1

)2s

= δ + 9n · (1− δ)2s ≤ 2δ
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This gives us the same guarantee as the power method of O(1/δ log n/δ). We will
show with Chebyshev polynomials (much like in Conjugate Gradient) that Lanczos
actually does better.

2.1 Chebyshev polynomials

Recall that: Ds =
∑s

i=1 Yi, Yi = ±1.

ps,d(x)
def
= IEY1,...,Ys

[
TDs(x) · 1|D|≤d

]
Fact:

sup
x∈[−1,1]

|ps,d(x)− xs| ≤ 2e−d
2/2s

Thus for p(λ) = ps,d(λ/λ1), s = d1/2δ · log 9n/δe and d = d
√

2s log 2n/δe we have

|p(λ)− (λ/λ1)
s| ≤ δ/n

Thus we get
sup p(λ)2 ≤ sup(λ/λ1)

2s + δ/n = O(δ/n)

Plugging in x = λ1 we have p(λ1) ≥ 1 − δ/n. Plugging back into our above bound
we get

λ1 − λ1(T )

λ1
= δ + 9n

O(δ/n)

1− δ/n
= O(δ)

thus completing the proof of our bound.

2.2 Running Time

Note that for all i we have Span{v,Av, ..., Aiv} = Span{v0, v1, ..., vi}, thus for any
vj ∈ Span{v,Av, ..., Aiv} we haveAvj ∈ Span{Av,A2v, ..., Ai+1v} = Span{v0, v1, ..., vi, vi+1}.
Thus for any j > i+ 1, vj is not in the span of these vectors, hence we have

v>i Avj = 0

Crucially now we use the fact that A is symmetric to take the transpose to get

v>j Avi = 0

This gives us then for j > i+ 1 vj is orthogonal to Avi, thus when we are calculating
our orthonormal basis, we need only orthogonalize with respect to at most two vectors,
as the vector is already orthogonal to the rest of the vectors. Furthermore this also
implies that T = V >AV is tridiagonal. Due to the sparsity and structure of T we
can compute the largest eigenvalue in O(k2) time. [4]
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