
Gaussian Mixtures and Tensor Decompositions

Cyril Zhang

April 20, 2015

Today, we’re going to look at an algorithm by Hsu and Kakade for learning mixtures
of spherical Gaussians, using orthogonal tensor decompositions. Before covering the main
result, we’ll present a review of the algebra of tensors, then a gentle introduction to the
method of moments and Gaussian mixture models.

1 Tensors

Tensors are the generalizations of vectors v ∈ Rn and matrices M ∈ Rm×n. These are
respectively 1-tensors and 2-tensors, which we can represent using one- and two-dimensional
arrays of real numbers. Although there are more general definitions, for our purposes, a
p-th order tensor (or a p-tensor) is an object that can be represented using a p-dimensional
array of real numbers. Technically, today by “tensor” we’re strictly referring to covariant
Cartesian tensors.

We can add tensors of the same order and shape, and multiply them by scalars.

1.1 Multilinear forms

Each 1-tensor can be associated with a linear functional, which takes Rn to R:

A(u) =
n∑
i=1

Aiui.

We know this as the inner product 〈A, u〉.
Each 2-tensor can be associated with a bilinear form, which takes a pair of vectors to R:

A(u, v) =
∑
i,j

Aijuivj.

In the language of matrices, we know this as uTAv.

1

We associate any tensor with an analogous multilinear form. For a 3-tensor, we have
A(u, v, w) =

∑
i,j,k Aijkuivjwk. For the rest of this introduction, we’ll build an intuition for

tensors of arbitrary order by considering 3-tensors.

We can also “partially” apply this multilinear form. Suppose we’re working with 2-
tensors. If we let the first argument of the bilinear form A(u, v) range over the elements of
the standard basis {e1, . . . , em}, keeping v fixed, we can assemble the m results into a vector
in Rm. In the case of 2-tensors, this corresponds to the matrix-vector product, a linear map
taking Rn to Rm. We’ll call this A(·, v). In general, if we fix k arguments for a p-tensor’s
multilinear form, we can get a tensor of order p− k.

1.2 Tensor product

Now, how do we build higher-order tensors from lower-order tensors? Let’s look at how we
might build the standard basis for matrices from the standard basis for vectors:

R3 has basis {e1, e2, e3}.
R3×3 has basis {e11 = e1e

T
1 , e12 = e1e

T
2 , . . . , e33 = e3e

T
3 }.

Now, let’s forget that 2-tensors are matrices. We define Rm×n (we prefer to write Rm⊗Rn)
as the space with basis elements ei ⊗ ej, where the ei’s and ej’s are bases for Rm and Rn,
respectively. The tensor product of ei and ej is just ei ⊗ ej, by definition.

Now, we define some rules that allow us to take the tensor product of arbitrary tensors:

• Distributivity: A⊗ (B + C) = A⊗B + A⊗ C, (A+B)⊗ C = A⊗ C +B ⊗ C.

• Scalar multiplication rule: kA⊗B = A⊗ kB := k(A⊗B).

• Associativity: A⊗ (B ⊗ C) = (A⊗ B)⊗ C := A⊗ B ⊗ C. (Really, we’re saying that
there’s a natural isomorphism between the tensor products of spaces parenthesized
differently.)

Some examples:

•
[
1
2

]
⊗
[
3
4

]
= (e1 +2e2)⊗ (3e1 +4e2) = 3e1⊗e2 +4e1⊗e2 +6e2⊗e1 +8e2⊗e2 =

[
3 4
6 8

]
.

We see here that the vector-vector case is simply the outer product uvT .

• The tensor product of three vectors is a natural analogue of the outer product:

[
1
2

]
⊗

[
1
2

]
⊗
[
1
2

]
=

[
1 2
2 4

] [
2 4
4 8

]
.

2

• Say z is a vector of independent Gaussians, each with mean 0 and variance σ2. Can
we compute E[z ⊗ z]? The diagonal terms are just E[z2i] = σ2. The cross terms are
E[zizj] = E[zi]E[zj] = 0. So, the answer is σ2

∑
ei ⊗ ei = σ2I. You might recognize

this as a covariance matrix.

• What about E[z ⊗ z ⊗ z]? The “diagonal” terms are E[z3i] = 0, and the other terms
have at least one E[zi] = 0. So, the answer is the zero tensor of order 3.

1.3 Tensor symmetry

From now on, we’ll only concern ourselves with “square” tensors like Rn⊗Rn⊗Rn. In fact,
we’ll mostly deal with symmetric ones.

A symmetric tensor A is one for which Ai1...ip = Aiσ(1)...iσ(p) for any permutation σ. This
is a strong condition: there are p! permutations of the coordinates.

Recall that for symmetric 2-tensors, the spectral theorem gives an eigendecomposition:
A =

∑
i λi(ui⊗ ui), with eigenvalues {λi} and an orthonormal basis of eigenvectors {ui}. In

general, a higher-order tensor does not enjoy such a clean decomposition, but we’ll give an
algorithm that finds one when one exists. More on that later.

2 Gaussian Mixtures

The Gaussian mixture model is a classic, very useful statistical model. In general, I have
a number of multivariate Gaussian sources, with different locations and shapes, and each
source has a weight. For each sample, I pick a source with probability according to its weight,
then sample from that source. Given a large number of samples, you want to estimate the
parameters.

Karl Pearson was the first to consider this problem, in 1894. [?] He had the forehead
breadth to body length ratios of 1000 crabs, which were distributed like this:

3

Pearson’s hypothesis was that he was actually looking at a mixture of two different species
of crabs, whose measurements were normally distributed with different means and variances.
He introduced the method of moments: he computed estimates for the first five moments
µ̂ = 1

n
Xi ≈ E[X], σ̂2 = 1

n
(Xi − µ̂)2 ≈ E[(X − µ)2], 1

n
(Xi − µ̂)k ≈ E[(X − µ)k], and equated

them to the theoretical moments. Then, he found a ninth-degree polynomial whose solutions
corresponded to mixtures of two Gaussians that matched these moments. This narrowed it
down to two solutions, and he chose the one that best matched the sixth moment. He did
this entirely by hand.

Fast-forward to modern times:

• In 1999, Dasgupta found a polynomial-time algorithm to solve this in the multivariate
case, as long as the Gaussians are well-separated. [?]

• In 2010, Kalai, Moitra, and Valiant found a polynomial-time algorithm which didn’t
need well-separated components, but required a number of samples exponential in the
number of Gaussian sources. [?]

• We’ll present an algorithm by Hsu and Kakade [HK13] that learns a mixture of spherical
Gaussians, without a separation condition, requiring only a polynomial number of
samples.

3 The Algorithm

Formally, we have k d-dimensional Gaussian sources {(µi, σ2
i)}, and a discrete distribution

w ∈ Rk, wi > 0,
∑
wi = 1. For each of N samples, we pick h ∼ w, then report X =

µh + z ∈ Rd, where z ∼ N (0, σ2
h). Then, there is a polynomial-time algorithm that obtains

ε-accurate estimates on the parameters with constant probability, with a polynomial number
of samples.

For simplicity, let’s assume k = d, and that µi’s are linearly independent. The general
case just involves taking some pseudoinverses instead of inverses. Let’s also assume that all
of the Gaussians have the same variance σ1 = σ2 = . . . = σ2.

3.1 Observing σ2

Lemma 1: we can estimate σ2.

Here, we start using the method of moments. We won’t worry about the error analysis.
By taking the mean µ̂ = 1

N

∑N
i=1Xi of many samples, we can estimate E[X] = Eh[µh] =∑d

i=1wiµi.

4

Now, we estimate Σ = E[(X − µ̂)⊗ (X − µ̂)], the covariance matrix. This is equal to

Eh[(µh − µ̂+ z)⊗ (µh − µ̂+ z)] = Eh[(µh − µ̂)⊗ (µh − µ̂) + z ⊗ z]

= Eh[(µh − µ̂)⊗ (µh − µ̂)] + σ2I

=
k∑
i=1

wi(µi − µ̂)⊗ (µi − µ̂) + σ2I.

What do we know about the first term, the sum of rank-one maps? Since it’s a sum of
psd matrices, it’s psd. And since the vectors (µi− µ̂) are linearly dependent (they add up to
0), it can’t have full rank d. Thus, it has some 0 eigenvalues; the rest are positive. Adding
σ2I shifts all of its eigenvalues up by σ2.

So, the smallest eigenvalue of Σ̂ is an estimate for σ2: σ̂2 := λmin(Σ̂).

3.2 Observing M2 and M3

Lemma 2: we can estimate M2 = Eh[µh ⊗ µh] and M3 = Eh[µh ⊗ µh ⊗ µh].
By averaging the quantity X ⊗ X over many samples, we can compute an estimate for

E[X ⊗X] = E[(µh + z)⊗ (µh + z)] = Eh[µh⊗µh] + σ2I. The first term is M2, which is what

we want. And we have an estimate for σ2, so we can subtract it off: M̂2 = ˆE[X ⊗X]− σ̂2I.

Similarly, we can compute an estimate for E[X ⊗X ⊗X] = E[(µh + z)⊗3]. This expands
to 8 terms. But recall that E[z ⊗ z ⊗ z] = 0. Terms like E[z ⊗ µh ⊗ µh] are also 0. So, we’re
left with M3 = E[µh ⊗ µh ⊗ µh], as well as three terms that look like E[µh ⊗ z ⊗ z]. But this
simplifies to

E[µh ⊗ (σ2

d∑
i=1

ei ⊗ ei)]

= µ⊗ (σ2

d∑
i=1

ei ⊗ ei).

Since we have estimates for both µ and σ, we have an estimate for this term. The other
terms are the same, with tensor indices permuted. So, we get

M̂3 = ˆE[X ⊗X ⊗X]− σ̂2

d∑
i=1

(µ̂⊗ ei ⊗ ei − ei ⊗ µ̂⊗ ei − ei ⊗ ei ⊗ µ̂).

Now we have estimates for M2 and M3. Why do we care about them?

5

3.3 Learning the Mixture

Let vi =
√
wiM

−1/2
2 µi, and V = [v1| . . . |vd]. Then, we have

V V T =
∑

wiM
−1/2
2 µiµ

T
i M

−1/2
2

= M
−1/2
2 (

∑
wiµiµ

T
i)M

−1/2
2

= M
−1/2
2 M2M

−1/2
2

= I.

So we know that V is an orthogonal matrix; that means the vi’s form an orthonormal basis
for Rd. This suggests the following strategy: if we can find an estimate for some matrix of
the form M = V DV T , then M is diagonalizable. If the entries in D (the eigenvalues of M)
are distinct, then the eigendecomposition is unique up to permutation and sign, allowing us
to recover the vi’s. Then, using our estimate for M2, we can transform these into the µi’s.

Let’s state V in terms of our parameters. Let A = [µ1| . . . |µd], and W = diag(w). Then,

V = M
−1/2
2 AW 1/2, so V DV T = M

−1/2
2 AW 1/2DW 1/2ATM

−1/2
2 = M

−1/2
2 AWDATM

−1/2
2 . We

already have an estimate for M
−1/2
2 , so it would be great if we could observe some matrix of

the form AWDAT .

Turns out we can use M3 to find such a matrix. Let’s pick a random vector η, and plug
it into one of the arguments of the trilinear form M3(·, ·, ·), collapsing it down to a 2-tensor

E[ηTµh(µh ⊗ µh)] =
∑

wiηTµi(µi ⊗ µi)

= AWdiag(ηTµ1, . . . , η
Tµd)A

T .

So, this gives us a matrix of the desired form. Also note that with probability 1, the entries
of this diagonal matrix are distinct.

So, popping the stack:

• Compute µ̂, σ̂2, M̂2, M̂3.

• Pick a random η, and compute the matrix E = M3(η, ·, ·).

• Compute an estimate for M
−1/2
2 EM

−1/2
2 = V DV T . Diagonalize to find V and D. Now

we have eigenpairs (±vi, ηTµi). Apply M
1/2
2 to obtain (±√wiµi, ηTµi).

• Recover the signs, then weights: ηTµi
ηT (±√wiµi) = ± 1√

wi
, which must be positive. Use these

to recover the µi’s from the ±√wiµi’s we computed. Done.

6

3.4 Reflection

That was cool, but the use of M3 was underwhelming. All we needed it for was to produce
a matrix that was simultaneously diagonalizable with M2, with distinct eigenvalues. Turns
out that we can further exploit the structure of the tensor.

There is a 3-rd order tensor T whose trilinear form T (u, v, w) isM3(M
−1/2
2 u,M

−1/2
2 v,M

−1/2
2 w).

You can verify that it’s just

T =
∑

wi(M
−1/2
2 µi)

⊗3

=
∑

wi(
1
√
wi
vi)
⊗3

=
∑ 1
√
wi
v⊗3i .

You can explicitly compute its entries using a matrix multiplication-like rule, but we won’t
worry about that. If you’re worried about consistency, just let u, v, w range through all
triples of standard basis vectors, and that allows you to read off the matrix entries.

T is a very special symmetric 3-tensor: it has an orthogonal decomposition. It’s a sum
of rank-one terms of the form λ(u⊗ u⊗ u), where the vi’s are orthogonal. It looks just like
the spectral decomposition guaranteed for symmetric 2-tensors. Given T , if we can find this
decomposition directly, then we can recover the weights and vi’s, from which we can obtain
the µi’s.

4 Tensor Power Method

This comes from a result by Anandkumar, Ge, Hsu, Kakade, and Telgarsky [AGHKT12],
with a cool simplification suggested by Sushant.

Let’s quickly review the matrix power method, in tensorial terms. Say you have a sym-
metric matrix M .

• Start with a random unit vector θ0.

• Repeat many times: θt+1 ←M(·, θt); θt+1 ← θt+1/|θt+1|.

Mθ/θ converges to the largest-magnitude eigenvalue, with eigenvector θ. To find the
entire decomposition, repeat the process, working in subspaces orthogonal to the eigenvectors
you’ve found.

The tensor power method is almost identical. Suppose you have a symmetric tensor
T =

∑
1√
wi
vi ⊗ vi ⊗ vi that admits an orthogonal decomposition.

• Start with a random unit vector θ0.

7

• Repeat many times: θt+1 ← T (·, θt, θt); θt+1 ← θt+1/|θt+1|. Note that unlike in the
matrix case, the map θ 7→ T (·, θ, θ) is not linear.

4.1 Gist of convergence analysis

Write θ0 in the spectral basis: θ0 =
∑
αivi, where αi = vTi θ0. We can omit the normalization

step (we only need to apply it once at the end), and see how the coefficients of θT relate to
those of θ0. We can show

T (·, θ1, θ1) =
∑ 1
√
wi
α2
i vi.

Similarly, if ci is the coefficient of vi for some θt, the corresponding coefficient in θt+1 is
c2i√
wi

. By induction, after T iterations, the coefficient of vi becomes
√
wi(

αi√
wi

)2
T
. Thus,

the eigenvector with the largest αi√
wi

= ηT vi√
wi

will dominate rapidly (doubly exponentially,

compared to exponentially as in the matrix power method).

The tensor power method is also unlike the matrix power method in that any of the
(pairwise orthogonal) eigenvectors can be fixed points of the map θ 7→ T (·, θ, θ). Thus,
finding distinct eigenvectors is easier. To get an eigenvector you haven’t gotten before,
simply pick θ0 to be orthogonal to the vectors you’ve found so far. (This fix is due to
Sushant.) This decomposition algorithm turns out to be much more numerically stable than
finding a matrix SVD.

References

[AGHKT12] Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus
Telgarsky. Tensor decompositions for learning latent variable models. http://arxiv.
org/abs/1210.7559.

[Das99] Sanjoy Dasgupta. Learning Mixtures of Gaussians. http://cseweb.ucsd.edu/

˜dasgupta/papers/mog.pdf.

[HK13] Daniel Hsu and Sham Kakade. Learning mixtures of spherical Gaussians: moment
methods and spectral decompositions. http://arxiv.org/abs/1206.5766.

[KMV12] Adam Kalai, Ankur Moitra, and Gregory Valiant. Disentangling Gaus-
sians. http://research.microsoft.com/en-us/um/people/adum/
publications/2012-disentangling-gaussians.pdf.

[Pea1894] Karl Pearson. Contributions to the mathematical theory of evolution. Phil.
Trans. Roy. Soc. London, A 185, 71-110. https://archive.org/details/
philtrans02543681.

8

http://arxiv.org/abs/1210.7559
http://arxiv.org/abs/1210.7559
http://cseweb.ucsd.edu/~dasgupta/papers/mog.pdf
http://cseweb.ucsd.edu/~dasgupta/papers/mog.pdf
http://arxiv.org/abs/1206.5766
http://research.microsoft.com/en-us/um/people/adum/publications/2012-disentangling-gaussians.pdf
http://research.microsoft.com/en-us/um/people/adum/publications/2012-disentangling-gaussians.pdf
https://archive.org/details/philtrans02543681
https://archive.org/details/philtrans02543681

	Tensors
	Multilinear forms
	Tensor product
	Tensor symmetry

	Gaussian Mixtures
	The Algorithm HK13
	Observing 2
	Observing M2 and M3
	Learning the Mixture
	Reflection

	Tensor Power Method
	Gist of convergence analysis

