
Coloring 3-Colorable Graphs

Charles Jin

April 3, 2015

1 Introduction

Graph coloring in general is an extremely easy-to-understand yet powerful tool. It has
wide-ranging applications from register allocation to image segmentation. For such a simple
problem, however, the question is surprisingly intractable. In this section I will introduce
the problem formally, as well as present some general background on graph coloring.

There are several ways to color a graph, in particular, one can color the vertices, faces,
or the edges. These problems turn out to be equivalent - for example, coloring the faces
of a graph is the same as coloring the vertices of the dual, while coloring the edges is the
same as coloring the vertices of the line graph. Today we consider the problem of vertex
coloring. For the sake of formality, here are a few definitions.

Definition A coloring for a graph G = (V,E) is a set of colors C along with a function
f mapping the vertex set V into C.

Definition A coloring is legal if ∀i, j ∈ V, (i, j) ∈ E ⇒ f(i) 6= f(j). In other words, one
cannot color adjacent vertices the same color.

Definition A graph is n-colorable if there exists a legal coloring on n colors.

Definition The chromatic number of a graph is the minimum cardinality over all sets
of colors that admit a legal coloring.

Already, we have the following theorem.

Theorem 1.1. Determining the chromatic number of a graph is NP-complete.

It turns out the situation is even more dire.

Theorem 1.2. Let n be the chromatic number of a graph. Then approximating n to within
n1−ε for ε > 0 is NP-hard.

With this in mind, we turn to a slightly easier question: assuming we know that a
graph is 3-colorable, what’s the best we can do?

1

2 A “Trivial” Solution

Though the results derived in this section may seem a bit weak at first, they turn out to be
surprisingly useful in our analysis later. As an aside, we will implicitly assume connected
graphs for the rest of this lecture (the results generalize with almost no work.)

2.1 A few propositions

Before we formulate our first solution to the problem itself, it is useful to establish a few
facts.

Proposition 2.1. If a graph is 2-colorable, then we can find a 2-coloring in linear time.

Proof Because the graph is 2-colorable, we start with any vertex and give it a color. Color
all neighbors a second color, and repeat via depth-first search. In general, pick any vertex
and color all nodes with odd distance one color, and all nodes with even distance a second
color.

Proposition 2.2. If a graph has maximum degree ∆, then we can find a ∆ + 1 coloring
in polynomial time.

Proof At every step, select any uncolored node, and color it using a color that its neighbors
haven’t used. Because the node has at most ∆ neighbors, and we have ∆ + 1 colors, this
is sufficient.

We are now ready to consider our first solution.

2.2 An O(
√
n) algorithm

Theorem 2.3. Let G be a 3-colorable graph on n vertices. Then there exists a poly-time
algorithm that produces an O(

√
n) coloring.

Proof We make use of Proposition 2.2. Let ∆ be the current maximum degree. If ∆ ≤
√
n,

then color the graph with the ∆ + 1 algorithm. Otherwise, pick a vertex with maximum
degree, color it any color, and remove it. The neighbors of the removed vertex can now be
2-colored, since the original graph was 3-colorable. Then by Proposition 2.1, we can color
the neighbors with 2 colors in poly-time. Remove the neighbors, and repeat. This loop
happens at most n√

n
=
√
n times, since we are removing at least

√
n vertices at each step.

Thus the loop takes at most 3
√
n colors, and the final step also takes O(

√
n) colors.

2

3 A Naive SDP Solution

Associate with each vertex i a vector vi. Then consider the following SDP:

min λ

s.t. vi · vj ≤ λ ∀(i, j) ∈ E
vi · vi = 1 ∀i
vi ∈ Rn ∀i

(1)

The idea here is that we are embedding the vertices in some n-dimensional space, and
the SDP is putting vertices that are connected as far away from each other as possible.
Therefore, we should be able to pick some number of partitions and color each partition
a different color, and show that with high probability, our partition produces a decent
coloring. We start by attempting to bound just how well we can expect the embedding to
spread out the points.

Lemma 3.1. If G is 3-colorable, then there exists a feasible solution with λ ≤ −1
2 .

Proof Assume we have some 3-coloring of G. Consider an equilateral triangle centered at
the origin, and associate with each color a unit vector that points to one of the vertices of
the triangle. Since vi · vj = ||vi|| ||vj || cos θ = cos θ, where θ is the angle between vi and vj ,
for vi = vj we get exactly 1, and for vi 6= vj , we get

vi · vj = cos

(
2π

3

)
= −1

2

as desired.

Thus the lemma shows that every pair of vertices sharing an edge form an angle that
is at least 2π

3 . It turns out that this is not enough. If we wanted to cover an n-dimensional
space with cones of angle 2π

3 , because the surface area of an n-sphere grows exponentially
with the dimension, this would give an exponential number of colors. Thus, we instead
randomly partition the space using some number of hyperplanes, show that on expectations
this does not color too many edges incorrectly, and repeat the process to color the illegally-
colored vertices.

Before we prove this formally, we will need a new concept.

Definition We call a coloring a semi-coloring if at most n
4 edges have endpoints that

share a color.

Lemma 3.2. In a semi-coloring, there exists some set of vertices of size at least half the
total number of vertices such that the coloring induced on the induced subgraph is legal.

3

Proof Remove all vertices that are adjacent and share the same color. Since there are at
most n

4 such edges, this removes at most n
2 vertices. The remaining vertices comprise a

legally-colored subgraph.

Lemma 3.3. Given an algorithm that produces a semi coloring on G with k colors, then
we can color the entire graph legally with only k log n colors.

Proof We first semicolor the graph with k colors, and remove the correctly colored vertices.
This leaves at most n

2 vertices, so we just repeat this process. This terminates in at most
log n steps, meaning the graph is colored with at most k log n colors.

Theorem 3.4. There exists a randomized rounding algorithm that produces a semi-coloring
on ∆log3 2 colors with probability at least 1

2 .

I’m going to omit a proof of this theorem because the analysis isn’t particularly enlight-
ening. It’s extremely similar to the MAXCUT algorithm we saw before: you essentially
pick t = 2 + ∆log3 2 random hyperplanes and color each of the 2t regions a different color.

Notice that this still only gives an O(nlog3 2 log n) solution, which is far worse than the
O(
√
n) naive algorithm. However, we can reapply the ideas behind our optimization of the

O(
√
n) to improve the bound.

We pick some parameter σ and proceed by removing a vertex of maximum degree and
coloring its neighbors with 2 colors as before. When there are no remaining vertices of
degree greater than σ, we use our SDP to semicolon the remaining vertices with O(σlog3 2)
colors. Optimizing over σ, we find (using basically the same analysis as before) that we
can take σ = nlog6 3 to give a semi-coloring on O(n0.387) colors with probability at least 1

2 .
This yields a coloring algorithm using O(n0.387 log n) colors.

Next, we will refine our SDP and rounding algorithm to produce an even better algo-
rithm.

4 A Refined SDP Solution

In order to motivate this solution, we need the concept of an independent set:

Definition Let G = (V,E). We call S ⊂ V independent if i, j ∈ S ⇒ (i, j) /∈ E.

It is obvious that if G = (V,E) is n-colorable, then V is the disjoint union of at most n
independent subsets of V (just take each subset to be the vertices of a certain color). If we
reverse this process, we can color a graph by repeatedly finding a large independent set,
then coloring and removing the independent set.

In fact, it should be at least believable why this process performs at least as good as
randomly picking partitions, because each step depends on previous steps. Therefore, we
should be able to look for one large independent set, remove it, then rerun the algorithm

4

to find the second largest independent set, etc. There was an implicit assumption in the
previous section that we really wanted to color the surface of the entire hypersphere. So
instead of expecting all the vertices to be distributed across the entire hypersphere, we’d
like to exploit clusters of vertices. The following lemma formalizes that such a process
actually gives a good coloring.

Lemma 4.1. Given an algorithm that finds an independent set of expected size γn, then
with high probability we can find an O(1

γ lnn) coloring.

Proof Assume for the time being that the algorithm deterministically returns an indepen-
dent set of size γn. We color this independent set some color, remove the set, and repeat.
It should be obvious that this produces a legal coloring. Then after k iterations, at most
(1− γ)kn vertices remain. We can use the identity 1− x ≤ e−x to get (1− γ)k ≤ e−γk, so
letting k = 1

γ lnn, this yields

(1− γ)kn ≤ e−γkn = e− lnnn = 1

vertex left after k iterations, which we can just assign its own color.
Now we use Markov’s inequality to provide a similar result for a randomized algorithm.

Let X be a random variable corresponding to the number of vertices not in the selected
independent set. If the expected size of the independent set is at least γn, then it follows
that E[X] ≤ n(1− γ). By Markov’s inequality, then

Pr
[
X ≥ n

(
1− γ

2

)]
≤ E[X]

n
(
1− γ

2

) ≤ n(1− γ)

n
(
1− γ

2

) ≤ 1− γ

2

So with probability at least γ
2 , we get an independent set of size γn

2 , and for a given constant
c, running the algorithm t = 2c

γ lnn times yields an independent set of size at least γn
2 with

probability at least

1−
(

1− γ

2

) 2c
γ

lnn
≥ 1− e−c lnn ≥ 1− 1

nc

Now we are ready to formally state our new SDP. As with before, associate with each
vertex i a vector vi, and consider the following SDP:

min 0

s.t. vi · vj ≤ −1/2 ∀(i, j) ∈ E
vi · vi = 1 ∀i
vi ∈ Rn ∀i

(2)

Notice that our objective function is simply a constant. This is because we only care about
a feasible solution, and by Lemma 3.1 such a solution always exists for 3-colorable graphs.

5

Recall from the discussion before that our main intuition in seeking this algorithm is
that we don’t want or need to color the entire surface of the hypersphere. So instead of
taking a partition, we just pick some large slice of the space that is somewhat concentrated,
and hope that our slice doesn’t contain too many edges.

Consider the following coloring algorithm, based on the feasible solution to the SDP.
First generate a random vector r = (r1, r2, ..., rn) by sampling each component indepen-
dently from N (0, 1), the normal distribution. Instead of producing a cut as we did before
in MAXCUT by partitioning the space with a hyperplane, instead we are going to consider
the set of vertices that are at least a distance ε from the given vector.

S(ε) = {i ∈ V | vi · r ≥ ε}

Since this does not necessarily give us an independent set, we just throw away internal
edges in the crudest way possible.

S′(ε) = {i ∈ S(ε) | ∀j ∈ S(ε), (i, j) /∈ E}

This might seem overly confident, however, realize that if we had a better way of
removing edges, we could just construct an independent set that way. The purpose of the
algorithm is to reduce the number of internal edges so that we can throw them out without
affecting our independent set too much.

First, some notation:

Fact 4.2. The probability density function of N (0, 1) is p(x) =
1√
2π
e−

x2

2 .

Fact 4.3. The cumulative density function of N (0, 1) is Φ(x) =
∫ x
−∞ p(s)ds. We can

further define Φ̄(x) = 1− Φ(x) =
∫∞
x p(s)ds.

Now we will begin to analyze the rounding algorithm given. The purpose of this analysis
is to pick a good value for ε by finding bound on the size of S′ in terms of ε. We expect
that if we can pick ε just right, then we can still capture a large portion of the vertices
without running into too many bad edges. Then Lemma 4.1 completes the proof.

Lemma 4.4. If Φ̄(
√

3ε) ≤ 1
2∆ , then E[|S′|] ≥ n

2 Φ̄(ε).

This isn’t exactly what we need, since our epsilon is still wrapped in some function of
Φ̄(x), so we need the following bounds.

Lemma 4.5. For x > 0,
x

1 + x2
p(x) ≤ Φ̄(x) ≤ 1

x
p(x)

We can now stitch our results together to give the final theorem:

6

Theorem 4.6. There exists a polynomial-time algorithm that produces an Õ(∆1/3
√

ln ∆)
coloring algorithm for 3-colorable graphs.

Proof Recall the SDP for finding an independent set given in (2). I claim the rounding
algorithm above produces an independent set of expected size Ω(n∆−1/3(ln ∆)−1/2). Then
by Lemma 4.1 this yields an O(∆1/3(ln ∆)1/2 lnn) coloring.

Then set ε =
√

2
3 ln ∆. By Lemma 4.5,

Φ̄
√

3ε ≤ 1√
3ε

1√
2π
e−3ε2/2

=
1√

2 ln ∆

1√
2π
e− ln ∆

=
1

2∆

1√
π ln ∆

≤ 1

2∆

By Lemma 4.4, this is enough to guarantee that

E[|S′(ε)|] ≥ n

2
Φ̄(ε)

Furthermore, by Lemma 4.5, if we can guarantee ε ≥ 1, then

Φ̄(ε) ≥ ε

1 + ε2
1√
2π
e−ε

2/2

≥ 1

2ε

1√
2π
e−ε

2/2

=
1

2
√

2
3 ln ∆

1√
2π
e− ln ∆/3

= Ω(∆−1/3(ln ∆)−1/2).

Combining these results, we get that the expected size of the independent set is at least

Ω(n∆−1/3(ln ∆)−1/2)

as claimed.
All that remains is to guarantee that ε ≥ 1 during execution. To accomplish this, we

use a familiar technique: if ε ever falls below 1, then we color the remaining graph with
the greedy algorithm from Proposition 2.2 with ∆ + 1 ≤ e3/2 + 1 ≤ 6 colors. This adds a
constant number of colors, which does not affect the asymptotic behavior.

7

Finally, we return to proving our lemmas.
To prove Lemma 4.4, we’re going to use 3 steps. First, bound the size of S, then find

the probability that vi ∈ S gets thrown out, and finally use this to find a bound on the
size of S′. Since S is defined in terms of vi · r, we first consider how vi · r is distributed.

Proposition 4.7. vi · r is normally distributed.

Proof We’ve seen this before, but in case you forgot, the weighted sum of gaussians is
again a gaussian, and we are free to rotate vi to be a unit vector along one component
without changing the distribution, so that in particular vi · r ∼ N (0, 1).

Lemma 4.8. Pr[i ∈ S(ε)] = Φ̄(ε), ∀i ∈ V .

Proof We know that i ∈ S(ε) ⇐⇒ vi · r ≥ ε. By Proposition 4.7, vi · r is normally
distributed so by definition Pr[vi · r ≥ ε] = Φ̄(ε).

Lemma 4.9. Pr[i ∈ S(ε) and i /∈ S′(ε)] ≤ ∆Φ̄(
√

3ε).

Proof The only way this can be the case is if there is another j ∈ S(ε) such that (i, j) ∈ E.
Thus we seek to bound

Pr[j ∈ S | (i, j) ∈ E and i ∈ S] (3)

We know that vi · vj = −1/2. Now the plane spanned by vi and vj has dimension 2, which
means that any two orthogonal vectors form a basis. Therefore, there must be some unit
vector u orthogonal to vi lying in this plane such that vj = avi + bu, for some choice of
constants a and b. However, we also know that vj ·vi = vi ·(avi)+vi ·(bu) = a since vi and u
are orthogonal, which implies that a = −1

2 . Furthermore, ||vj ||2 = ||avi+bu||2 = 1
4 +b2 = 1

so that b =
√

3
2 .

We can thus rewrite this as u = 2√
3

(
1
2vi + vj

)
which yields

u · r =
2√
3

(
1

2
vi + vj

)
· r ≥ 2√

3

(
1

2
ε+ ε

)
=
√

3ε

Again, u is a unit vector that is the sum of gaussians, so it is normally distributed. Fur-
thermore, it is distributed as an independent gaussian, since vi and u are orthogonal. This
means that the event happens for a particular neighbor j with probability at most Φ̄(

√
3ε).

Since i has at most ∆ neighbors, by the union bound, we get the probability that i is in S
but not S′ is at most ∆Φ̄(

√
3ε), as desired.

Proof (of Lemma 4.4) Since Φ(
√

3ε) ≤ 1
2∆ , then the probability that i /∈ S′ given that

i ∈ S is at most 1
2 by Lemma 4.9. By Lemma 4.8 and linearity of expectation, this means

that we can expect |S′| ≥ |S|2 ≥
n
2 Φ̄(ε).

8

Finally, we prove our bounds on Φ̄(x).

Proof (of Lemma 4.5) This proof isn’t particularly enlightening. We have that p′(x) =
−xp(x), so that

(
− 1
xp(x)

)′
=
(
1 + 1

x2

)
p(x). To get the lower bound,(

1 +
1

x2

)
Φ̄(x) =

∫ ∞
x

(
1 +

1

x2

)
p(s)ds

≥
∫ ∞
x

(
1 +

1

s2

)
p(s)ds

= −1

s
p(s)

∣∣∣∣∞
x

=
1

x
p(x)

For the upper bound,

Φ̄(x) =

∫ ∞
x

p(s)ds

≤
∫ ∞
x

(
1 +

1

s2

)
p(s)ds

=
1

x
p(x)

5 Conclusion

Just to give you an idea of how good this algorithm actually is, using an improved rounding
scheme apparently gives a slightly better asymptotic bound, while a more clever SDP
relaxation gives an even better algorithm still. However, O(nc) is still the best bound we
know of, and improving upon that is still an open question.

References

[1] D. P. Williamson, and D. B. Shmoys. The Design of Approximation Algo-
rithms. Electronic copy, to be published by Cambridge University Press. URL:
http://www.designofapproxalgs.com/book.pdf. Date: 2010.

9

