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Abstract

We attempt to convey a sense of compressed sensing. Specifically, we discuss how `1 minimization
and the restricted isometry property for matrices can be used for sparse recovery of underdetermined
linear systems even in the presence of noise.

1 Introduction

Suppose A ∈Mm×n(R) is a matrix and we obtain a measurement y ∈ Rm, which we know to be the image
of some x ∈ Rn under A. If the system Ax = y is underdetermined (i.e., m < n), then x is not unique.
Suppose however that we want a single solution and we know x is “small”. We might try to pick an x which
solves the equation with the least `2 norm by solving the convex program

min
x∈Rn

‖x‖`2 Ax = y. (L)

This program has the advantage that a unique solution is guaranteed. Unfortunately, the solution to (L) is
often not the best one for applications.

Many real world signals are known to be sparse (i.e. having few nonzero entries) in some basis. Thus, we
might alternatively seek a sparse solution for Ax = y. The sparsest solution to the linear equation is given
by the program

min
x∈Rn

‖x‖`0 Ax = y. (S)

Here the “norm” ‖x‖`0 counts the number of nonzero entries in a vector x. Solving (S) is a difficult NP-hard
problem—the subset-sum problem may be reduced to it—in combinatorial optimization [16]. We will replace
(S) with the convex program

min
x∈Rn

‖x‖`1 Ax = y. (P)

Solving this program is often called “basis pursuit” and can be efficiently done with linear programming or
specialized algorithms [13, ch. 15]. Relating the solutions of (S) and (P) is major goal in compressed sensing
which we will explore in this paper.

There is an intuitive geometrical reason that we might expect the `1 norm to be better at finding sparse
solutions than the `2 norm. The program (L) finds smallest ball around the origin that intersects the solution
subspace of Ax = y. The level sets of the `1 norm are polyhedra, which emphasize the axes. Therefore, it
seems “likely” that the (P) finds a sparse solution in the solution subspace.

We now introduce a restriction on matrices that allows sparse solutions to be easily recovered. Recall
that a vector is said to be k-sparse if it has at most k nonzero entries.

Definition 1.1 ([7]). A matrix A ∈Mm×n(R) satisfies the restricted isometry property (RIP) of order k if
there exists a δk ≥ 0 such that for all k-sparse vectors x ∈ Rn,

(1− δk)‖x‖2`2 ≤ ‖Ax‖
2
`2 ≤ (1 + δk)‖x‖2`2 .

The smallest such δk is called A’s restricted isometry constant of order k.
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Notice that δ1 ≤ δ2 ≤ · · · . The RIP is related to vector space frames [8] and the Johnson-Lindenstrauss
lemma [1]. Unfortunately, checking whether a matrix has the restricted isometry property is NP-Hard in
general [19]. On the other hand, many families of random matrices (e.g. having Gaussian or Bernoulli entries)
satisfy the RIP with high probability [6, §1.3].

Theorem 1.2 ([7, lemma 1.2]). Suppose A ∈Mm×n satisfies RIP with δ2s < 1. Then the equation Ax = y
has an unique s-sparse solution given by (S).

Proof. Suppose x, x ∈ Rm are s-sparse and Ax = Ax′. By the RIP,

0 ≤ (1− δ2s)‖x− x′‖`2 ≤ ‖A(x− x′)‖`2 = 0.

Necessarily, x = x′.

Before stating the main theorem, we introduce the notion of error. In reality, we do not know Ax exactly.
Instead, we measure y = Ax + z, where z ∈ Rm is a small error vector satisfying ‖z‖`2 ≤ ε. We would
like our recovery of x to be robust against error. To deal with this, we generalize (P) to the (still convex)
program

min
x∈Rn

‖x‖`1 ‖Ax− y‖`2 ≤ ε. (P')

Finally, we can state the main theorem of this lecture. We denote the vector containing only the s largest
entries of x by xs.

Theorem 1.3 ([5, 1.3]). Suppose A ∈Mm×n(R) satisfies RIP with δ2s <
√

2−1. Let x∗ denote the solution
to (P'). Then, there are constants C0, C1 depending only on δ2s such that

‖x∗ − x‖`2 ≤ C0s
−1/2‖x− xs‖`1 + C1ε.

Theorem 1.3 tells us that when RIP holds, basis pursuit recovers solutions very close to sparse solutions
of the equation.

2 Proof of Theorem 1.3

We closely follow [5].
Set x = x∗ + h. Our goal is to show ‖h‖`2 is small. The RIP for A only gives us control over sparse

vectors, so we start by breaking h up into s-sparse vectors. Let T0 be the indexes of the s largest entires
of x. Let T1 be the indexes of the k largest entries of hT c

0
. Let T2 be the indexes of the s largest entries of

h(T0∪T1)c and so on. We observe that h can be written as the sum of s-sparse vectors hT0
+ hT1

+ hT2
+ · · · .

Using the triangle inequality,

‖x− x∗‖`2 = ‖h‖`2 ≤ ‖hT0∪T1
‖`2 + ‖h(T0∪T1)c‖`2 . (1)

We will estimate the two terms of (1) separately and then combine them to prove the theorem. We start
by showing the ‖h(T0∪T1)c‖`2 term can be bounded in terms of the first term ‖hT0∪T1

‖`2 . Several useful
intermediate inequalities are obtained along the way.

Lemma 2.1 (Tail estimates).

‖hT c
0
‖`1 ≤ ‖hT0‖`1 + 2‖xT c

0
‖`1 (2)∑

j≥2

‖hTj‖`2 ≤ s−1/2‖hT c
0
‖`1 (3)

‖h(T0∪T1)c‖`2 ≤ ‖hT0
‖`2 + 2s−1/2‖x− xs‖`1 (4)
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Proof. Since x is feasible for (P') and x∗ is a minimum,

‖x‖`1 ≥ ‖x+ h‖`1 =
∑
i∈T0

|xi + hi|+
∑
i∈T c

0

|xi + hi| ≥ ‖xT0
‖`1 − ‖hT0

‖`1 + ‖hT c
0
‖`1 − ‖xT c

0
‖`1 .

The last step uses the triangle inequality twice. Rewriting and applying the reverse triangle inequality proves
(2).

‖hT c
0
‖`1 ≤ ‖x‖`1 − ‖xT0

‖`1 + ‖xT c
0
‖`1 + ‖hT0

‖`1 ≤ ‖hT0
‖`1 + 2‖xT c

0
‖`1

If j ≥ 2,
‖hTj
‖`2 ≤ s1/2‖hTj

‖`∞ ≤ s−1/2‖hTj−1
‖`1 .

Summing yields (3). ∑
j≥2

‖hTj‖`2 ≤ s−1/2
∑
j≥1

‖hTj‖`1 = s−1/2‖hT c
0
‖`1

From this, we immediately obtain

‖h(T0∪T1)c‖`2 =

∥∥∥∥∥∥
∑
j≥2

hTj

∥∥∥∥∥∥
`2

≤
∑
j≥2

‖hTj
‖`2 ≤ s−1/2‖hT c

0
‖`1 . (5)

By the Cauchy-Schwarz inequality,

‖hT0
‖`1 ≤ s1/2‖hT0

‖`2 . (6)

Applying (5), (2), and (6) proves (4).

‖h(T0∪T1)c‖`2 ≤ s
−1/2‖hT c

0
‖`1 ≤ s−1/2(‖hT0

‖`1 + 2‖xT c
0
‖`1) ≤ ‖hT0

‖`2 + 2s−1/2‖xT c
0
‖`1

Next, we want to bound the main part of the error term ‖hT0∪T1
‖`2 . We begin with a lemma.

Lemma 2.2. Suppose x and x′ are s-sparse and s′-sparse respectively and supported on disjoint sets. Then

|〈Ax,Ax′〉| ≤ δs+s′‖x‖`2‖x′‖`2

Proof. We may assume without a loss of generality that ‖x‖`2 = ‖x′‖`2 = 1. The RIP tells us that

2(1− δs+s′) = (1− δs+s′)‖x+ x′‖2`2 ≤ ‖Ax±Ax
′‖2`2 ≤ (1 + δs+s′)‖x+ x′‖2`2 = 2(1− δs+s′).

By the polarization identity,

|〈Ax,Ax′〉| ≤ 1

4

∣∣‖Ax+Ax′‖2`2 − ‖Ax−Ax
′‖2`2
∣∣ ≤ δs+s′ .

Lemma 2.3 (Main term estimate).

‖hT0∪T1
‖`2 ≤ (1− ρ)−1(αε+ 2ρs−1/2‖x− xs‖`1) (7)

where

α ≡ 2
√

1− δ2s
1− δ2s

, ρ ≡
√

2δ2s
1− δ2s

.
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Proof. RIP allows us to control the size of ‖hT0∪T1‖`2 with ‖AhT0∪T1‖`2 , and so we start by bounding the
latter. We break ‖AhT0∪T1‖`2 into parts using properties of the inner product.

‖AhT0∪T1
‖2`2 = 〈AhT0∪T1

, Ah〉 −
∑
j≥2

(
〈AhT0

, AhTj
〉+ 〈AhT1

, AhTj
〉
)

(8)

From the triangle inequality and hypothesis,

‖Ah‖`2 = ‖A(x− x∗)‖`2 ≤ ‖Ax∗ − y‖`2 + ‖y −Ax‖`2 ≤ 2ε. (9)

The first term of (8) can be bounded using Cauchy-Schwarz, the RIP, and (9).

|〈AhT0∪T1 , Ah〉| ≤ ‖AhT0∪T1‖`2‖Ah‖`2 ≤ 2ε
√

1 + δ2s‖hT0∪T1
‖`2 (10)

Since T0 and T1 are disjoint Cauchy-Schwarz gives

‖hT0
‖`2 + ‖hT1

‖`2 ≤
√

2‖hT0∪T1
‖`2 .

To estimate the sum term of (9), we apply lemma 2.2 and (3).∑
j≥2

|〈AhT0 , AhTj 〉|+ |〈AhT1 , ThTj 〉| ≤ δ2s(‖hT0‖`2 + ‖hT1‖`2)
∑
j≥2

‖hTj‖`2

≤ δ2s
√

2s−1/2‖hT0∪T1‖`2‖hT c
0
‖`1 (11)

We now have

(1− δ2s)‖hT0∪T1
‖2`2 ≤ ‖AhT0∪T1

‖2`2 ≤ ‖hT0∪T1
‖`2(2ε

√
1 + δ2s +

√
2δ2ss

−1/2‖hT c
0
‖`1)

from RIP, (10), and (11). We divide by (1− δ2s)‖hT0∪T1
‖`2 .

‖hT0∪T1
‖`2 ≤ αε+ ρs−1/2‖hT c

0
‖`1

From (2) and (6), we obtain

‖hT0∪T1
‖`2 ≤ αε+ ρs−1/2(‖hT0

‖`1 + 2‖x− xs‖`1) ≤ αε+ ρ‖hT0∪T1
‖`2 + 2ρs−1/2‖x− xs‖`1 .

By the hypothesis of theorem 1.3, ρ < 1, and we get

‖hT0∪T1‖`2 ≤ (1− ρ)−1(αε+ 2ρs−1/2‖x− xs‖`1),

which completes the lemma’s proof.

Applying our estimates (4) and lemma 2.3 to the two terms of (1), we have

‖h‖`2 ≤ 2‖h(T0∪T1)‖`2 + 2s−1/2‖x− xs‖`1 ≤ 2(1− ρ)−1(αε+ (1 + ρ)s−1/2‖x− xs‖`1).

This completes the proof of theorem 1.3.

3 Remarks

A huge amount of research in compressed sensing has appeared since the publication of the original papers
[6, 10] around 2004-2006. Among other things, researchers have investigated techniques for sparse recovery
besides basis pursuit e.g. matching pursuit [20]. There is also replacement condition for RIP called the
nullspace property, which is a necessary and sufficient condition for (S) and (P) to have the same solutions
[9].

As far as applications are concerned, compressed sensing is being used in areas as diverse as tomogra-
phy, astronomy, machine linearing, linear coding, and experiment design [2, 3]. It is particularly useful in
situations where minimizing the work done in sensors is important such as space probes. Gimmicks like
single-pixel cameras [11] have captured the public imagination.

Finally, for readers still curious, there are a lot of other (possibly more palatable) introductions to
compressed sensing [4, 12, 13, 14, 15, 17, 18].
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