
CPSC 665 : An Algorithmist’s Toolkit Lecture 1 : 30 Mar 2015

Presentation: Tree Metrics
Lecturer: Sushant Sachdeva Scribe: Alex Reinking

1. Introduction

The basic idea we want to talk about is that of tree metrics, which give estimations of distance
functions on regular graphs. These are desirable since the related metrics are defined on trees,
which are often far easier to work with than general graphs, and it turns out that using these
approximate metrics only introduces a small (O(log n)) loss in accuracy.

2. Definitions

We start by laying out some basic terminology. Tree metrics are best defined in terms of graph
metrics, so we’ll state these formally.

Definition 2.1 (Distance Metric). A metric (V, d) on a set of vertices V gives a distance duv to
every pair of vertices u, v ∈ V such that

(1) duv = 0 iff u = v.
(2) duv = dvu ∀ u, v ∈ V
(3) duv ≤ duw + dwv ∀ u, v, w ∈ V (Triangle inequality)

This is a very standard definition for this kind of thing, but it does guarantee us the triangle
inequality, which we’ll use later. So now let’s define tree metrics in terms of this

Definition 2.2 (Tree Metric). A tree metric (V ′, T) is a tree T defined on vertices V ′ ⊇ V together
with the non-negative lengths on each edge of T . The distance Tuv between vertices u, v ∈ V ′ is the
length of the unique shortest path between u, v ∈ T . We hold that Tuv must obey the usual graph
metric laws above.

It is important to note that T does not at all need to be a spanning tree of V and that V ′ can
be much, much, larger. The important property that we care about is that Tuv doesn’t go too far
away from duv when u, v ∈ V . We capture this intuition with the following definition:

Definition 2.3 (Distortion). We call the distortion of the tree metric (V ′, T) the smallest value of
α such that

(1) duv ≤ Tuv ≤ αTuv
for all u, v ∈ V .

Given a low-distortion embedding, we can often reduce problems on general metric spaces to
problems on tree metrics with a loss of just α in accuracy. This is cool because, as we will see, it
is much easier to solve problems on a tree than it is to solve them on a graph.

A natural question to ask at this point is: are there any graphs for which no good approximate
tree exists?

Example 2.4 (High Distortion Graph). It happens to be that in general, Cn, the cycle on n vertices
has a distortion of at least n−1

8 . Consider, for example, the figure of C7 below:
Now dab = 1 ≤ Tab = 6 ≤ 6dab, so the distortion is at least 6 = n − 1. Then in general, if you

just drop an edge from the n-cycle to get a tree, the distortion will be at least n− 1. You could only
do better, then, by adding some vertices.

1

Figure 1. C7 is poorly-
approximated by a tree metric

So the question becomes: how do we sidestep this problem? If
we can’t always find low-distortion embeddings, what can we do?
Well, we can give up and do a different problem instead. Rather
than deterministically finding low-distortion embeddings, we’ll just
find low-distortion embeddings in expectation.

3. Sampling from a Low-Distortion Distribution

The primary theorem we are going to prove comes from
Fakcharoenphol, Rao, and Telwar.

Theorem 3.1 (FRT ’04). Given a distance metric (V, d) such that
duv ≥ 1, ∀u 6= v ∈ V , there is a randomized polynomial-time
algorithm that produces a tree metric (V ′, T), V ′ ⊇ V such that
∀u, v ∈ V , duv ≤ Tuv and E[Tuv] ≤ O(log n)duv.

It is known that there exist metrics such that any probabilistic
tree metric approximation has distortion Ω(log n), so this result is actually the best possible up to
constant factors.

The assumption that duv ≥ 1 is important for the analysis, but not an issue in practice, since
for most problems, the graph can simply be scaled.

4. An Application to Balanced Separator

We won’t go too deep into this (ie. I won’t prove anything), but since tree metrics have so many
applications (network design, route planning, etc.), I’d like to showcase one example here.

Recall the SDP relaxation for Balanced Separator

(2) SDP


min

∑
(i,j)∈E

∥∥vi − vj∥∥2

subject to
∑

i,j∈V

∥∥vi − vj∥∥2 ≥ c(1− c)n2

and
∥∥vi − vj∥∥2 ≤ ‖vi − vk‖2 +

∥∥vk − vj∥∥2

We proved that solving this SDP and cutting the resulting vectors with a hyperplane gave good
results. But we can do this somewhat faster by solving a linear program to produce a graph metric.
The linear program is produced by analogy:

(3) LP



vars dij

min
∑

(i,j)∈E
dij

subject to
∑

i,j∈V
dij ≥ c(1− c)n2

and dij ≤ dik + dkj

dij ≥ 0, dij = dji∀i, j

Now applying the FRT theorem to get a low-distortion tree, we can solve Balanced Separator on
the tree. This is far easier than on the graph, since we can check every cut of V ′ in O(E) time by
just looking at the cut gained by removing that edge. This will induce a cut on V by intersections
with only an additional O(log n) factor added to the approximation.

2

5. Hierarchical Cut Decomposition

The idea here is that we’re going to produce a tree whose vertices correspond to nearby sets of
vertices in the original graph. Each node in the tree will be partitioned by its children; the top level
(the root) of the tree will correspond to all of V , and the bottom level (the leaves) will correspond
to individual vertices. By partitioning it in this way, we can be sure we don’t stretch the distances
too much. Below is a figure to help visualize the situation.

Figure 2. A hierarchical cut decomposition of the metric space V . Picture from Design of
Approximation Algorithms, Section 8.5 by David P. Williamson and David B. Shmoys

We will prove that such trees form a family that, when sampled, imply the FRT theorem. Let
us briefly state a few guarantees provided by our construction.

The resulting tree will contain log2 ∆ + 1 levels, where ∆ is the smallest power of two above
twice the diameter of the graph, ie.

∆ = min
n

{
2n ≥ 2 max

u,v
duv

}
Furthermore, if S is the set of vertices in V corresponding to some node at level i of T , we will
have that S is contained in a ball of radius [2i−1, 2i) centered on some vertex in V . For the leaves
at level 0, notice that they surely contain only one vertex since they are contained in a ball of size
[2−1, 20) = [1

2 , 1), and we assumed that duv ≥ 1 whenever u 6= v. Also, notice that by our definition
of ∆, the whole graph is contained in the single vertex at level log2 ∆. This is because it’s in a ball
of radius at most ∆, which is no smaller than twice the diameter of the original graph.

But before we actually see how to construct these trees, let’s try to see that they’re actually
what we want by proving the first part of FRT, and deriving a bound for the tree metric.

Lemma 5.1. Any tree T obtained by a Hierarchical Cut Decomposition of a metric (V, d) has
Tuv ≥ duv. Further, if the least common ancestor of the vertices in T corresponding to the vertices
u, v ∈ V is at level i, then Tuv ≤ 2i+2

3

Proof. Let S ∈ T be some node at level i. If u, v ∈ S, then duv < 2i+1 since the radius of S is at
most 2i (so if u, v are a diameter then the distance between them could be up to 2i+1). Thus, these
two vertices cannot belong to a node at level b log2 duv c − 1 since otherwise the distance between

them would be bounded by 2b log2 duv c < duv, which is a clear contradiction. Thus, the lowest level
where u and v meet is b log2 duv c, and so

Tuv ≥ 2

b log2 duv c∑
j=1

2j ≥ duv

This can be clearly seen referring to the picture – the factor of 2 comes from moving up and back
down to the least common ancestor, and each path is an accumulation of powers of two. Finally,
this observation also shows that if u and v have their least common ancestor at level i, then

Tuv = 2

i∑
j=1

2j = 2i+2 − 4 ≤ 2i+2

�

5.1. Algorithm. So now we can actually proceed to describe the algorithm itself. We begin by
drawing on two sources of randomness that will be fix a few values at the start of the algorithm.
First, we will shuffle the vertices of V according to some uniformly random permutation π. We will
then pick a random radius for the bottom level r0 ∈ [1

2 , 1), and then multiplying the chosen value

by two for each successive level so ri = 2ir0.
This might seem a little mysterious at first. We choose r0 specifically to take advantage of the

assumption that duv ≥ 1 to ensure the bottom layer consists of only single-vertex sets. This explains
the open bound of 1. But we choose the lower bound 1/2 since it is the lowest we can choose such
that level 1 will not share that same guarantee. If the radius r0 were chosen to be 1/2− ε/2, then
r1 = 1− ε and so both levels 0 and 1 will necessarily be identical. Granted, this might still be the
case regardless, but at least we don’t have that awkward behavior.

So, in order to produce the tree metric, all that’s left is to describe the process of breaking a
given node down into the next level of partitions. Given a set S at level i, we assign each vertex
u ∈ S to the first vertex π(j) so that u ∈ B(π(j), ri−1). All of the vertices assigned to the same
π(j) are grouped together, and the intersections of these groups with S become S’s children.

Notice that this implies that S need not be centered around a node it actually contains! This,
of course, holds for all its children too.

To make this much clearer, I will borrow the example from the Design of Approximation Algo-
rithms, Section 8.5 by David P. Williamson and David B. Shmoys to help explain this.

The algorithm operates, then, by starting at the top vertex, the one corresponding to V , breaking
it down into its child nodes, and recursively applying that same procedure for log2 ∆ levels.

5.2. Proof. Now it’s time to actually prove the FRT theorem. Take a moment to glance back up
at it if you’ve forgotten the statement.

Proof. The first part of FRT was already shown by the lemma, so we just need to place an upper
bound on the expected value of the tree metric. By the lemma, we can use our bound for Tuv if we
assume that the least common ancestor of u, v is on level i+1 (we know it won’t be at level 0, so we
don’t lose anything by adopting this convention). Under these circumstances, we have Tuv ≤ 2i+3.
For this to actually happen, though, u and v must be in separate balls at level i. By construction,
then, there is some w so that B(w, ri) contains exactly one of u or v.

4

Figure 3. This example shows the set S = {1, 3, 4, 5, 7, 8, 9, 10, 11} being partitioned at
one level of the Hierarchical Cut Decomposition. We take the random partition as the
identity (ie. the vertices are already permuted) and start from vertex 1. The ball centered
at 1 captures 1, 4, 11 so {1, 4, 11} becomes a child node of S. Similarly, the ball around 2
contains 2, 7, 10 but since 2 is not contained in S, {7, 10} becomes a child node. The ball
centered at 3 gives rise to {3, 5} The ball centered at 4 contains 8, but since it already
affiliated to a subset, only {8} forms a child node. The ball around 5 has no effect, and then
the ball around 6 contains 9, making the final child node {9}. So in total, the children of S
are {1, 4, 11}, {7, 10}, {3, 5}, {8}, {9}.

For the sake of clarity, we will say that w settles u and v on level i if the ball B(w, ri) is the
first in π to include either u or v, ie. this particular vertex settles the question of whether they are
together after that point.

By contrast, we will say that w cuts u and v on level i is exactly one of u or v is in the ball
B(w, ri).

Now, we will define events to analyze this probabilistically. For any pair u, v ∈ V :

Xiw = w cuts (u, v) at level i

Siw = w settles (u, v) at level i

Then we have a kind of trivial bound of Tuv:

(4) Tuv ≤ max
i

1[∃w ∈ V : Xiw and Siw] · 2i+3

We can make this a bit more manageable with a sum since these two events can only happen for
the first time once.

(5) Tuv ≤
∑
w∈V

log2 ∆−1∑
i=0

1[Xiw and Siw] · 2i+3

5

So in expectation:

(6) E[Tuv] ≤
∑
w∈V

log2 ∆−1∑
i=0

Pr[Xiw and Siw] · 2i+3

So let’s take a look at where we’re going before we jump into some technical details. We will
shortly prove the following lemmas, but just state them for now.

Lemma 5.2. Pr[Siw|Xiw] ≤ bw and
∑

w∈V bw = O(log n).

Lemma 5.3.
log2 ∆∑
i=1

Pr[Xiw] · 2i+3 ≤ 16duv.

So with these two lemmas in place, we can finish up:

E[Tuv] ≤
∑
w∈V

log2 ∆−1∑
i=0

Pr[Siw|Xiw] Pr[Xiw] · 2i+3

by the second lemma,

≤
∑
w∈V

bw

log2 ∆−1∑
i=0

·2i+3


by the first lemma,

≤
∑
w∈V

bw [16duv]

= 16duv
∑
w∈V

bw

by the second lemma,

≤ 16 duv O(log n)

≤ O(log n)duv

Lemma 5.2. Suppose WLOG duw ≤ dvw. then the probability that w cuts (u, v) on level i is the
probability that u ∈ B(w, ri) and v /∈ B(w, ri). Equivalently, this is duw ≤ ri ≤ dvw. Since
ri ∈ [2i−1, 2i) uniformly, this is just:

Pr[Xiw] =

∣∣[2i−1, 2i) ∩ [duw, dwv)
∣∣∣∣[2i−1, 2i)

∣∣ =
1

2i−1

∣∣∣[2i−1, 2i) ∩ [duw, dwv)
∣∣∣

Scaling by 2i+3:

=
2i+3

2i−1

∣∣∣[2i−1, 2i) ∩ [duw, dwv)
∣∣∣

= 16
∣∣∣[2i−1, 2i) ∩ [duw, dwv)

∣∣∣
But since the power-of-two intervals actually partition the whole interval, we actually have

log2 ∆−1∑
i=0

2i+3 ·Pr[Xiw] ≤ 16
∣∣[duw, dwv)

∣∣ = 16(dvw − duw) ≤ 16duv

with the last inequality following from the triangle inequality. �
6

Lemma 5.3. We need to bound Pr[Siw|Xiw]. So we order the vertices w ∈ V by their distance to
either u or v. That is, we order by min {duw, dvw}. Note that if Xiw occurs then one of u or v is in
B(w, ri). Thus, any z closer to the pair than w will also have one in its ball. So in order for w to
be the first cutting vertex (and therefore also the settling vertex), it must come before any other
such z. This is a standard exercise in probability (look up example 10.3.4 in Invitation to Discrete
Mathematics).

Anyway, we let bw = (position of w in π)−1. If the position is j, then bw = 1/k. In sum,∑
w∈V

vw =
∑
j = 1n1/j = Hn = O(log n).

And that completes the proof! �

�

7

	Lecture 1 – Presentation: Tree Metrics
	1. Introduction
	2. Definitions
	3. Sampling from a Low-Distortion Distribution
	4. An Application to Balanced Separator
	5. Hierarchical Cut Decomposition
	5.1. Algorithm
	5.2. Proof

