
CPSC 665 : An Algorithmist’s Toolkit Lecture 1 : 2 Feb 2015

Max-Cut and Semidefinite Programming
Lecturer: Sushant Sachdeva Scribe: Alex Reinking

1. Introduction

In this lecture we talked about the Max-Cut Problem and its approximation via Semidefinite
Programming. We started off by defining the Max-Cut problem and presenting a naive algorithm to
approximate it. The invention of Semi-Definite Programming produces a far superior approximation
algorithm, as we saw by the end of lecture.

2. Max-Cut

Definition 2.1 (Graph Cut). A cut of a graph G = (V,E) is a bi-partition of V , given by S ⊆ V .
The cut is the pair (S, V \ S). We say that an edge (i, j) ∈ E is cut when exactly one of i or j is
in S. The size of a graph cut is the number of edges cut. An illustration of this can be seen in the
figure below.

i

j

Figure 1. Illustration of a
graph cut; i and j are to be
construed as lying in sepa-
rate components.

Then, the Max-Cut problem is to find the largest cut of a graph G.
This is equivalent to finding a maximum bipartite subgraph in G. It is
also one of the 21 classic NP-complete problems, as showed by Karp
[Kar72].

2.1. Randomized Approximation. It is possible to derive a 1/2-
approximation to Max-Cut via a randomized algorithm. The process
we follow couldn’t be simpler – sample every edge independently and
uniformly at random with probability 1/2 to be included in the cut S.

This can be seen by observing that Pr[(i, j)is cut] = 1/2, which im-
plies that the expected value of the cut is just half of the total number
of edges.

This is a dead-simple randomized algorithm, yet people tried fruit-
lessly for a long time to improve on this. The first breakthroughs were
by Michel Goemans and David Williamson [GW94]. They used semi-
definite programming to achieve a 0.87856-approximation. This was the

first result better than 1/2. So what is semidefinite programming?

Remark 2.2. A good exercise would be to derive a deterministic, greedy 1/2 approximation

3. Semidefinite Programming

We begin with some necessary preliminary results. The proofs of these results can be found in
any standard text on Linear Algebra, but are restated here for completeness.

Theorem 3.1. The Spectral Theorem Given X ∈Mn(R) symmetric, let λ1, . . . , λn and u1, . . . , un
be the n eigenvalues and eigenvectors respectively, counted with multiplicity.

Then, the following statements are equivalent:

(1) For all i, Xui = λiui.
(2) The set {ui} is an orthogonal (normal) basis for Rn

(3) X =
n∑
i=1

λiuiu
T
i = UΛUT with U = [u1 · · ·un] and Λ = Diag (λ1, . . . , λn).

1

(4) By orthogonality, UUT = UTU = I.

Definition 3.2. We say that X ∈Mn(R) is symmetric positive semidefinite (written X � 0) when
X is symmetric and all of its eigenvalues are non-negative.

Theorem 3.3. The following statements are equivalent:

(1) X � 0
(2) ∀y ∈ Rn, yTXy =

∑
i,j
Xijyiyj ≥ 0. That is to say, the quadratic forms are all non-negative.

(3) X = V TV , ie. Xij = V T
i Vj for some V ∈ Mn(R). It is also said that X has a “Gram

Matrix” representation corresponding to {v1, . . . , vn}.

Fact 3.4. Positive Semidefinite matrices are partially ordered. Equivalently, A � B iff A−B � 0
iff A−B is positive semidefinite.

Fact 3.5. The set of positive semidefinite matrices forms a convex cone.

{X : X � 0} =

∑
i

λiuiu
T
i : ui ∈ Rn, λi ≥ 0


Proof. (Sketch) To prove ⊆ containment, note that if X is positive semidefinite, then it is contained
in the right hand side by the spectral theorem.

To prove ⊇ containment, note that if you have any such combination, you can verify that it gives
a non-negative quadratic form.

yT (uiu
T
i λi)y = λi(u

T
i yi)

2 ≥ 0

�

3.1. Linear Programming. We will now put this machinery to use in to give the definition of a
semidefinite program.

Definition 3.6. The Frobenius Dot Product over matrices X,Y ∈Mn(R) is given by the formula

(1) X • Y =
∑
i,j

XijYij = Tr(XTY) = Tr(XY T)

This can be thought of as projecting X,Y to Rn2
and taking the regular dot product there.

So, if we have a linear program on n2 variables, we can give the program as

(2) LP

[min C •X C ∈Mn(R)
s.t.∀i ∈ [m] Ai •X = bi bi ∈ R

=
∑

j,k(Ai)jkXjk Ai ∈Mn(R)

Semidefinite programs just add X � 0 as a constraint! So they’re easy to understand in terms
of what we already know!

3.2. An Example SDP. Imagine we had some matrix (see the figure below for an illustration of
the constraints)

(3) A =

(
x z
z y

)
⇔ x ≥ 0

y ≥ 0
and xy ≥ z2

2

1. 2. 3. 4.

1.

2.

3.

4.

0

Figure 2. Illustration a
level set of a positive semi-
definite form, xy ≥ 1.

You can use this specialized case to ask the question: what is the min-
imum of

(4) min
X

(
0 1
1 0

)
•X = X12 +X21

such that X11 = 1 and X22 = 2. These constraints may be encoded by
the following matrix equations:

(5)

(
1 0
0 0

)
•X = 1 and

(
0 0
0 1

)
•X = 2

Remark 3.7. For a good exercise, you should try to show that the min-
imizing X gives C •X = −2

√
2 with

(6) X =

(
1 −

√
2

−
√

2 2

)
Theorem 3.8. You can find an X that is optimal up to ε > 0 in time poly(n,m,L, log 1

ε) where
n is the number of variables, m is the number of constraints, and L is the bit complexity.

Remark 3.9. Of course, these examples only give equality constraints. Really, we would like to
show that SDPs generalize LPs. This makes for a good exercise. As an outline, note that we have
roughly the following correspondence:

LP
min cTx
subj. to Ax = b,
x ≥ 0

⇔

SDP (slower thanks to n2 vars)
minC •X Ai = Diag (ai)
subj. to Ai •X = bi C = Diag (c)
X � 0

4. Max-Cut Approximation via SDP

At last, we are prepared to return to the Max-Cut problem. We will construct a Quadratic
Integer Program that expresses our intent. If you think of

(7) xi =

{
+1 if i ∈ S
−1 if i /∈ S

then looking at an edge (i, j), we don’t really get a linear constraint. One suitable non-linear
constraint is given by: (i, j) is cut ⇔ xixj = −1⇔ 1

4(xi − xj)2 = 1
So to maximize the cut size, we really want to maximize

(8) max
∑

(i,j)∈E

1

2
(1− xixj) =

∑
(i,j)∈E

1

4
(xi − xj)2

subject to the constraints that xi ∈ {1,−1}, or, equivalently, that x2i = 1.

Lemma 4.1. The optimal solution of this QIP = OPT Max-Cut

4.1. Vector Relaxation. Unfortunately, quadratic integer programs (like linear integer programs)
are nearly intractable. So, we relax the constraints to ignore direction and instead care only about
unit magnitude. The correspondence for these programs is natural (let Xij = vTi vj):

QIP
max

∑
(i,j)∈E

1
4(xi − xj)2

subj. to x2i = 1

⇔


Relaxed

max
∑

(i,j)∈E

1
4

∥∥vi − vj∥∥2
subj. to ‖vi‖2 = 1

⇔


SDP
max

∑
(i,j)∈E

1
4(Xii − 2Xij +Xjj)

subj. to Xii = 1, X � 0


So this is a really useful tool!

3

Theorem 4.2. Given X, an optimal SDP solution up to ε, you can obtain {vi} in O(n3) arithmetic
operations.

And that’s it for today. We’ll close with a few remarks about SDPs

Remark 4.3. It is best to think of SDPs as vector relaxations of QIPs.

Remark 4.4. All constraints and objectives must be linear in the Gram Matrix (vTi vj)ij, e.g.
‖vi‖ = 1⇔ vTi vi = 1.

Remark 4.5. You can’t assume vi lie in any particular dimension (other than n), and you cannot
enforce any such dimension constraint. This means we cannot enforce an upper bound on the rank
of X.

Remark 4.6. Since we only care about the magnitudes, vTi vj, the {vi} need not be unique even if
X is unique.

We’ll continue with more on semidefinite programming next week!

References

[GW94] Michel X Goemans and David P Williamson. .879-approximation algorithms for max cut
and max 2sat. In Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing, pages 422–431. ACM, 1994.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

4

	Lecture 1 – Max-Cut and Semidefinite Programming
	1. Introduction
	2. Max-Cut
	2.1. Randomized Approximation

	3. Semidefinite Programming
	3.1. Linear Programming
	3.2. An Example SDP

	4. Max-Cut Approximation via SDP
	4.1. Vector Relaxation

	References

