
CPSC 665 : An Algorithmist’s Toolkit Lecture 6 : 28 Jan 2015

Linear Programming Duality
Lecturer: Sushant Sachdeva Scribe: Charles Jin

1. Introduction

This lecture dealt with the concept of duality in formulating linear optimizations. We began
by analyzing a simple linear program, proving a lower bound by taking a linear combination of
constraints. We then generalized this process and formulated the concepts of the dual and primal
linear programs. We finished by stating and proving a theorem relating the solution of a dual to
its primal known as Strong Duality.

2. A Toy Problem

Example 2.1 (A Simple Linear Program). Consider the following linear program:

min x1 + x2

s.t. x1 + 2x2 ≥ 4

2x1 + x2 ≥ 5

x1, x2 ≥ 0

Is it possible to show a lower bound of 2.5 for the minimization problem using only arithmetic
operations? What’s the best we can do?

Solution. Notice that we can get the proposed bound of 2.5 by combining the last two constraints:

2x1 + x2 ≥ 5

x2 ≥ 0

2x1 + x2 + x2 ≥ 5 + 0

2(x1 + x2) ≥ 5

x1 + x2 ≥ 2.5

But we can do even better. In fact, we can achieve the minimum bound by simply adding the
first two constraints and dividing by three:

x1 + 2x2 ≥ 4

2x1 + x2 ≥ 5

x1 + 2x2 + 2x1 + x2 ≥ 4 + 5

3(x1 + x2) ≥ 9

x1 + x2 ≥ 3

This bound is achievable with x1 = 2, x2 = 1. The natural question is, then, is this process
generalizable?
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3. Duality of Linear Programs

So what exactly did we do? We took positive linear combinations of constraints. To formalize
this, in general, any linear program LP can be written as:

min c>x

s.t. Ax ≥ b

where we have n variables and m constraints, and A is a real-valued m-by-n matrix. We can then
pick some vector y of length m such that every entry is nonnegative, and consider∑

i

yi(a
>
i x) ≥

∑
i

yibi ⇒ y>Ax ≥ b>y

where the ai are rows of the constraint matrix A.
Now suppose that we have y ≥ 0 such that

A>y = c

Then we have

y>Ax = (A>y)>x = c>x⇒ c>x ≥ b>y

which gives us a lower bound on the minimization, as in the example. But this turns out to be
another optimization problem, since we would like to find the maximum lower bound. This yields
the follow concept of a dual linear program:

Definition 3.1 (Dual Linear Program). Given a linear program LP with constraints Ax ≥ b
and objective min c>x, we denote its Dual Linear Program (D)

max b>y

s.t. A>y = c

y ≥ 0

We call the original program the Primal Linear Program (P).

Lemma 3.2 (Weak Duality). ∀ feasible x for (P) and feasible y for (D), we have c>x ≥ b>y.

Proof. Let x? be the minimizer for (P), and y? be the maximizer for (D). Then we have the following
chain of inequalities:

c>x ≥ c>x? ≥ b>y? ≥ b>y.

�

We adopt the following conventions:

unbounded minimization problems are assigned -∞
unbounded maximization problems are assigned +∞

infeasible minimization problems are assigned +∞
infeasible maximization problems are assigned -∞

Under this convention, the weak duality theorem always holds.

Fact 3.3. The dual of a dual is equivalent to the primal.
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4. Strong Duality

Somewhat surprisingly, often we get Strong Duality, where the optimum values of the primal
and the dual are equal. Consider the Primal (P) and Dual (D) programs as before. The following
theorem states the result formally.

Theorem 4.1 (Strong Duality). If either (P) or (D) is feasible and bounded, then they are both
feasible, bounded, and share the same optimum value.

The full statement of the theorem, that takes into account all possible scenarios is the following:

Theorem 4.2 (Strong Duality). One of the following always holds:

(1) Both (P) and (D) are infeasible.
(2) (P) is unbounded ⇒ (D) is infeasible.
(3) (D) is unbounded ⇒ (P) is infeasible.
(4) There exists an x? feasible for (P) and a y? feasible for (D) s.t. c>x? = b>y?.

For cases 1-3, the result follows by weak duality. So we assume cases 1-3 don’t hold. Thus, at
least one of (P) or (D) is feasible and bounded. Since the dual of a dual is equivalent to the primal,
WLOG we assume (P) to be feasible and bounded. This means we only need to prove one direction
of the fourth statement.

Let x? be the minimizer for (P), and I := {i ∈ [m]|a>i x? = bi} be the set of tight constraints
at x?. Before attemping to prove the theorem, we first introduce the concept of complementary
slackness.

Lemma 4.3 (Complementary Slackness). Suppose (P) is feasible and bounded. Let x? be the
optimizer for (P). Then, any y feasible for (D), satisfies b>y = c>x? if and only if

∀i, yi > 0⇒ a>i x
? = bi.

Proof. For any feasible y, we define the duality gap to be c>x? − b>y. By weak duality, we know
that

c>x? − b>y ≥ 0.

Recall that A>y = c, so that we actually have

0 ≤ y>Ax? − y>b =
∑
i

yi(a
>
i x

? − bi).

Since Ax? ≥ b, and y ≥ 0, each term in the above sum is positive. If c>x? = b>y?, then∑
i

yi(a
>
i x

? − bi) = 0

implies that each term in the sum is exactly zero. Thus, we have

∀i, y?i > 0⇒ a>i x
? = bi

as desired. �

This lemma shows that ∃y? feasible s.t. c>x? = b>y? ⇔ ∃y? feasible s.t. i 6∈ I ⇒ yi = 0. So our
theorem is equivalent to proving that there exists a feasible y satisfying complementary slackness.
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Figure 1. Situation described above.

Informal proof. Consider the following informal “proof”. Consider the polytope of the given
constraints. Let each constraint represent a wall of the polytope. Assume the optimization function
is pointing up. The dropping a really small ball into the polytope should see the ball landing at
exactly the minimization point.

However, the only walls applying force are the tight constraints. The force applied to the ball
by the wall corresponding to constraint aix ≥ bi is along the direction ai. Thus, the total force due
to the walls is just

∑
i∈I aiyi, for some yi ≥ 0. Since the ball is at rest, so the net force must be

zero, i.e. ∑
i∈I

aiyi = c

Then we can just set yi = 0 for i 6∈ I, and we obtain c =
∑

i aiyi, yi ≥ 0, with y satisfying
complimentary slackness, and hence proving the theorem. Let us now formalize these intuitions.

Proof of Theorem 3.4. As mentioned before, parts 1-3 of the theorem follow directly from weak
duality and the definitions, so we concern ourselves only with the fourth statement. Assume to the
contrary. Then let c 6∈ K := {

∑
i∈I aiyi|yi ≥ 0}. Notice that K is a closed, convex cone.

Lemma 4.4 (Farkas’ Lemma). If c 6∈ K, ∃d ∈ < s.t. d>c < 0 and ∀z ∈ K, d>z ≥ 0,

Proof. A sketch is given here. The idea behind the lemma is to pick d carefully. Take any point p
s.t. p ∈ K and ||p − c|| is equal to the minimum of ||z − c|| over all z ∈ K. Now for any z ∈ K,
the angle ∠cpz is obtuse, so we can show that (z − p)>(c− p) ≤ 0. The final point is to show that
such a p exists. (One approach is to use a theorem of Weierstrass’s.) �

This lemma allows us completes the proof. Consider x = x? + εd for small ε > 0. Then take
i ∈ I, so that

a>i x = a>i x
? + εa>i d

Then each ai ∈ K ⇒ d>ai ≥ 0, and in particular,

a>i x
? + εa>i d ≥ a>i x? = bi
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Now consider i 6∈ I. We know that
a>i x

? > bi
so there exists some ε > 0 s.t.

a>i x = a>i x
? + εa>i d > bi

(Note: we have implicitly taken take epsilon minimum over all i. As such, this proof is valid only
for finite constraint sets.)

But this is a contradiction, because

d>c < 0⇒ c>x = c>x? + εc>d < c>x?

violating the minimality of x?, which completes the proof. �
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