
CPSC 665 : An Algorithmist’s Toolkit Lecture 17 : 23 Mar 2015

Low-Stretch Spanning Trees
Lecturer: Sushant Sachdeva Scribe: Alex Reinking

1. Introduction

In this lecture we discussed the results of one of Professor Spielman’s papers. The Star De-
composition algorithm takes a graph and recursively divides it into smaller parts until we create a
low-stretch spanning tree. Most of the algorithm is easiest to understand by looking at an illustra-
tion, so much of these notes are devoted to presenting diagrams, rather than technical details.

2. Preliminaries

Definition 2.1 (Stretch). Given a graph G and a spanning tree T ⊆ G = (V,E), define the stretch
of T as

(1) Stretch(T) =
∑
e∈G\T

|ce|

where ce is the unique cycle in T ∪ {e}. That is, for each edge in the graph, we look at the new
shortest path in the tree corresponding to the edge (think of the edge as being “stretched” onto the
tree). So if we let dG(u, v) be the distance between u, v ∈ V in G, and dS(u, v) be the distance
between u, v ∈ S ⊆ V in the subgraph induced by S, then, in fact:

(2) Stretch(T) =
∑

e=(u,v)∈G\T

1 + dT (u, v)

So, we would like to find a tree T of low total stretch, ideally on the order of O(m poly(log n))
where m is the number of edges in G and n is the number of vertices. The Star Decomposition
algorithm, devised by Elkin, Emek, Spielman, and Teng [EEST08], produces a tree of stretch
O(m log3 n) in time O(m logm).

3. Example

Star graphs, shown in figure 1, are a sort of best-case scenario for stretch. Like all trees, their
total stretch is 0, but they also have the nice property that the longest distance between two
vertices in the graph is 2 (for S3 and up). Running the star decomposition algorithm on a star
graph predictably yields the same graph in response.

Figure 1. Star graphs of a few orders. (Source: MathWorld)

1

4. Star Decomposition Properties

In this section, we will present the Star Decomposition algorithm through a series of loose pictures
and proofs, with the aim of getting the intuition for the algorithm across, rather than the technical
details.

4.1. Inputs and Outputs. The Star Decomposition algorithm takes in a graph G and a distin-
guished vertex x0. It produces a partition of V , (V0, V1, . . . , Vk), so that

(1) The Vi are a partition ie. disjoint and V =
k⋃
i=0

Vi

(2) x0 ∈ V0
(3) The Vi are connected so that ∃(xi, yi)∀i = 1, . . . , k such that xi ∈ Vi and yi ∈ V0

This situation is depicted in figure 2.

V2

V1 V3

V0
x0

y1

y2

y3

x1

x2

x3

Figure 2. Illustration of Star Decomposition output

4.2. Properties. Now, we’ll move on to defin-
ing a few desirable properties for our output to
have. We will use these properties to show that
the stretch is low. First, recall the definition for
the radius around a vertex in a graph:

Definition 4.1 (Radius in a Graph). The ra-
dius is rooted on a vertex x and is defined to be
the distance to the furthest vertex in the graph.
Formally: radVi(x) = maxu∈Vi dVi(x, u)

The first additional property we would like to
have is balance. We say a partition is balanced
when all of the parts are some constant fraction
smaller than the whole. We take 3/4 to be a
fraction suitable for our purposes. Formally:

(3) radVi(xi) ≤
3

4
radV (x0)

Secondly, we would like the partition to be ε-efficient, by which we mean that if G′ = G −{
edges between Vi and Vj∀i 6= j

}
+
{

(xi, yi)
}

then for all u, dG′(u, x0) ≤ (1 + ε)dG(u, x0). This
is the condition that will guarantee our low stretch requirement. Basically it’s saying that the
distance between partitions via the base part V0 doesn’t get stretched too much.

Lemma 4.2. In O(m) time, we can find an ε-efficient, balanced star decomposition such that

(4) |# of edges cut| =
∣∣G \G′∣∣ ≤ O(m

ε

logm

radG(x0

)
Proof. Omitted. See [EEST08] for the full proof. �

5. Producing a Spanning Tree

The method by which we actually produce a spanning tree is straight-forward. We fix a given
x0 ∈ G and take (V) to be our initial partition. We then recursively apply the star decomposition
algorithm to each part of the partition, discarding edges between the resulting parts (as in G′).
This gives a sequence of graphs: G0 = G,G1 = G′, G2, . . . , Gj = T , which ends in the spanning
tree we desire.

2

5.1. Claims. First, that this process ends in a spanning tree is clear. Next, since the radius of
each part, which is always between 1 and m, is constantly decreasing by a factor of at most 3

4 , we

know there are at most logm
log 4/3 levels of recursion. Finally, by repeating the ε-efficiency condition

we get

dG1(u, x0) ≤ (1 + ε)dG(u, x0)

dG2(u, x0) ≤ (1 + ε)2dG(u, x0)

and thanks to the radius decrease:

dT (u, x0) ≤ (1 + ε)log4/3mdG(u, x0)

taking ε = 1/m:

≤ e · dG(u, x0)

5.2. Bounding the stretch. Now, we will show that the total stretch of the tree is on the order
of O(m log3m)

Proof. Let H be one of the star pieces from the first decomposition step, say V2. Now, let (u, v) ∈ G′

be one of the edges thrown away. Then the stretch for this edge is bounded by:

dT (u, v) ≤ dT (u, x2) + dT (x2, v)

≤ e · (dH(u, x2) + dH(x2, v))

≤ 2e · radH(x2)

Then the total stretch of the edges deleted in H during the step from G2 to G3 is

(5)
∑

(u,v) as above

dT (u, v) ≤ 2e · radH(x2) ·O
(
m′

e
log

m′

radH x2

)
≤ O

(
m′

e
logm′

)
where m′ =

∣∣E(H)
∣∣. Then applied to the whole graph for this phase, the stretch is O

(
m
e logm

)
.

Finally, since there are logm phases at most and ε = 1/ logm, we get O(m log3m) for our total
stretch. �

6. Producing the Decomposition: A Sketch

Now we have reduced the problem to finding these star decompositions, since if they exist with
the properties we prescribed, we will have a low-stretch spanning tree. Our requirements are
twofold: we need not only that a low stretch decomposition be produced, it must also be produced
efficiently.

6.1. Region Growing. We will start to describe the process for region growing by introducing
a few definitions. We define a family of concentric sets Lr for r ≥ 0 so that Lr = B(x0, r) ={
u ‖ dG(x0, u) ≤ r

}
. These sets have the following properties:

(1) L0 = {}
(2) Lr ⊆ Lr′ whenever r′ ≥ r
(3) If u ∈ Lr and (u, v) ∈ E, then v ∈ Lr+d(u,v).

We also say that vol(S) =
∑
u∈S

deg(u), so vol(V) = 2m and |∂S| is the number of edges with exactly

one endpoint in S.
3

Lemma 6.1. Given 0 ≤ λ < λ′ there exists some r ∈ [λ, λ′) so that

(6) |∂Lr| ≤
1 + volLr
λ′ − λ

log(m+ 1)

This is to say that we can actually find a radius with a small boundary.

Proof. First, we define the continuous volume to be cvol(r) = 1+ # of edges inside Lr+ the
“fraction” of edges on the boundary within the ball. Take as fact the following two properties of
the continuous volume:

(1) cvol(r) ≤ 1 + vol(Lr)
(2) d

dr cvol(r) = |∂Lr|
Then, assume that:

|∂Lr| > α(1 + cvol(r))

⇒ d

dr
cvol(r) > α cvol(r)

⇒
λ∫

λ′

d(log cvol(r))dr > α

λ∫
λ′

dr = log
cvol(λ′)

cvol(λ)

So now O(logm) ≥ log cvol(λ′)
cvol(λ) > α(λ− λ′) is a contradiction for α = log(1 + 2m)/(λ− λ′). So, let

λ = µ/3 and λ′ = 2µ/3, where µ = radV (x0), then for any r ∈ [λ, λ′), Lr is balanced with radius
below 3/4. Thus, we can let V0 = Lr, remove it from the graph, and repeat on the remaining part
until we get a partition. �

References

[EEST08] Michael Elkin, Yuval Emek, Daniel A Spielman, and Shang-Hua Teng. Lower-stretch
spanning trees. SIAM Journal on Computing, 38(2):608–628, 2008.

4

	Lecture 1 – Low-Stretch Spanning Trees
	1. Introduction
	2. Preliminaries
	3. Example
	4. Star Decomposition Properties
	4.1. Inputs and Outputs
	4.2. Properties

	5. Producing a Spanning Tree
	5.1. Claims
	5.2. Bounding the stretch

	6. Producing the Decomposition: A Sketch
	6.1. Region Growing

	References

