
CPSC 665 : An Algorithmist’s Toolkit Lecture 1 : 23 February 2015

Gradient Descent and Conjugate Gradient
Lecturer: Sushant Sachdeva Scribe: Rachel Lawrence

1. Introduction

Solving a linear system approximately via iteratively improving guesses is often more feasible
than solving it outright. Gradient Descent and Conjugate Gradient are iterative methods for solv-
ing systems of linear equations that have symmetric, positive definite, and sparse matrices.

In particular, suppose we wish to solve the system Ax = b, and we know that A � 0 ∈ Rn×n

Definition 1.1 (PSD System). A PSD System is a linear system of equations, whose matrix
representation is a PSD matrix.

2. Solving PSD Systems

Let f(x) = ‖x∗ − x‖2A, the “distance” from x to the optimal solution x∗. We wish to minimize
f(x).

Definition 2.1 (Inner Product). 〈a, b〉M = aᵀMb

Definition 2.2 (Norm). ‖a‖M = 〈a, a〉
1
2
M

Remark 2.3. M � 0 ⇔ f is a convex function.

So solving linear functions in PSD matrix is equivalent to solving convex programs, and we have
that:

f(x) =
∥∥x∗ − x∥∥2

A

= 〈x− x∗, x− x∗〉A
= xᵀAx− 2xᵀb+ x∗ᵀAx∗︸ ︷︷ ︸

constant

So x∗ = A−1b and ∇(f(x∗)) = 0

This leads us to a basic idea for minimizing convex functions: “if you’re at point x on a differ-
entiable function, you should move in a direction to minimize the function”. Gradient descent is a
method for solving linear systems approximately, based on the concept of moving a small amount
in the opposite direction from the gradient at every step.

Figure 1. Solving PSD Systems

It is easy to see that if f were not convex,
gradient descent could get “stuck” in a local
minimum – but if it is convex, every local opti-
mum is a global optimum.

1



3. Gradient Descent

The algorithm for computing the iterative approximations is as follows:

3.1. Gradient Descent Algorithm. First, guess x0 = 0. At every subsequent step, update xt
by moving “against the gradient” by some factor αt:

xt+1 = xt − αt∇f(xt)

Definition 3.1 (Residual). The residual rt at each step t is defined as Axt − b.

Thus we have that

∇f(x) = 2(Ax− b) = 2rt

Now, it remains to determine the best value for αt, α
∗
t , at each step. To do this, note that

f(xt+1) = f(xt − 2αtrt)

=
∥∥x∗ − xt + 2αtrt

∥∥2
A

=
∥∥x∗ − xt∥∥2A + 4αt〈rt, x∗ − xt〉A + 4α2

t ‖rt‖
2
A

And we can minimize this expression to find α∗t by solving for αt when ∂
∂αt

= 0:

∂

∂αt
= 4〈rt, x∗ − xt〉A + 8αt ‖rt‖2A = 0

α∗t = −1

2

〈rt, x∗ − xt〉A
‖rt‖2A

Now, recalling from the definition of the inner product that

〈rt, x∗ − xt〉 = rᵀtA(x∗ − xt)
= rᵀt (b−Axt)
= −rᵀt rt

And from this we can calculate that α∗t =
rᵀt rt

‖rt‖2A

3.2. Algorithm Analysis. Ultimately, we would like to know the runtime of this algorithm. To
start, we examine how the function changes after 1 step of gradient descent. Plugging back in to
f(xt+1):

f(xt+1) = f(xt) + 4αt〈rt, x∗ − xt〉A + 4α2
t ‖rt‖

2
A

= f(xt)−
2(−rᵀt rt)2

‖rt‖2A
+ 4(

1

4
)
(−rᵀt rt)2

‖rt‖2A

= f(xt)−
(rᵀt rt)

2

rᵀtArt

Now, we are able to examine how rapidly the function value decreases, cumulatively:

f(xt) =
∥∥x∗ − xt∥∥2A

=
∥∥∥A−1(b−Axt)∥∥∥2

A

= rᵀtA
−1rt

2



And so

f(xt+1) = f(xt)

(
1− (rᵀt rt)

2

f(xt)(r
ᵀ
tArt)

)

= f(xt)

(
1− (rᵀt rt)

2

(rᵀtA
−1rt)(r

ᵀ
tArt)

)
Fact 3.2. Where λmax and λmin are the largest and smallest eigenvalues of A,

rᵀtArt
rᵀt rt

≤ λmax(A)

and
rᵀtA

−1rt
rᵀt rt

≤ λmax(A−1) = 1
λmin(A)

Thus we can get an upper bound for f(xt+1) bound independent of rt:

f(xt+1) ≤ f(xt)

(
1− λmin(A)

λmax(A)

)
And we can see that f decreases multiplicatively after every iteration.

Definition 3.3 (Condition Number of A). The condition number of a matrix A is defined

as κ(A) = λmax(A)
λmin(A)

.

Equivalently, for ellipsoid εA = {x|xᵀA−1x ≤ 1}, κ(A) measures the “skewness” of εA:

κ(A) =

(
longest axis of ellipsoid

smallest axis of ellipsoid

)2

Fact 3.4. Using this definition, we can modify the previous inequality to say that

f(xt+1) ≤ f(xt)(1−
1

κ(A)
)

Applying this inequality inductively,

⇒ f(xt) ≤ f(x0)e
−t/κ(A)

And so
f(x0) =

∥∥x∗∥∥2
A

since the initial guess was that x0 = 0.

3.3. Runtime.

Theorem 3.5. After O(κlog(1ε )) operations, where tA is the time required to multiply by A,the
error at xt is at most ε ‖x∗‖A
Proof. To find the runtime of Gradient Descent, we wish to solve for t such that∥∥x∗ − xt∥∥A ≤ ε∥∥x∗∥∥A

f(xt) ≤ ε2f(0)

therefore, e−tκ(A) = ε2 suffices, and so

t = 2κ log
1

ε

This t means we need O(κ log(1ε )) iterations of Gradient Descent, and each iteration requires a
constant number of matrix multiplications. �

3



So we can see that in the worst case, the runtime of Gradient Descent is quadratic, but it can
actually be quite fast when working with sparse matrices.

4. Conjugate Gradient

It turns out, we can do better than Gradient Descent by using the Conjugate Gradient method
[HS52]

Definition 4.1 (Krylov Subspace). The Krylov Subspace of order t for matrix A and vector
b is the linear subspace spanned by the images of b under the first t− 1 powers of A:

Span{b, Ab,A2b, · · · , At−1b}
Definition 4.2 (Conjugate Gradient Method). Define x0 = b and then compute

x1 = Ax0 − b ∈ Span{b, Ab}
x2 ∈ Span{b, Ab,A2b}

...

Remark 4.3. The tth vector output from Gradient Descent lies in the Krylov subspace of order
t+ 1 for A and b, but need not be the best vector in that subspace.

Figure 2. Gradient Descent

Theorem 4.4. Conjugate Gradient outputs the best vector in the Krylov subspace of order t, after
t iterations

How to compute these vectors quickly?
1. Suppose {v0, v1, ..., vt} is any basis for the Krylov subspace.
2. Can we find βi such that

∑
i βivi minimizes f?

f(
∑
i

βivi) =

∥∥∥∥∥∥x∗ −
∑
i

βivi

∥∥∥∥∥∥
2

A

=

∑
i

βivi

ᵀA
∑

i

βivi

− 2(Ax∗)ᵀ

∑
i

βivi

+ a constant

and using matrix inversion,

=
∑
i,j

βiβj(v
ᵀ
iAvj)− 2

∑
i

βi(b
ᵀvi) + c

Now, as everyone knows, Conjugate Gradient works using a healthy dose of magic:
4



4.1. Magic Item #1: Separability. What if there were an orthogonality condition, so that
vᵀiAvj = 0 for all i 6= j?

〈vi, vj〉A = 0⇔ vi, vj are A-orthogonal so

f(
∑
i

βivi) =
∑
i

β2i (vᵀiAvi)− 2
∑
i

βi(b
ᵀvi) + c

And so under the orthogonality assumption, the problem has been reduced to a “separable” equa-
tion, which is easily solved:

β∗i =
bᵀvi
vᵀiAvi

So, we will endeavor to orthogonalize all the vi to reduce the problem to this simpler case.

4.2. Computing an A-orthogonal basis. Using Gram-Schmidt Orthogonalization:
Pick v0 = b; Span{v0} = Span{b}
For wi = Avi−1,
Obtain vi by A-orthogonalizing wi with respect to {vo, ..., vi−1}:

vi = wi −
〈wi, v0〉A
〈v0, v0〉A

v0 −
〈wi, v1〉A
〈v1, v1〉A

v1 − · · · −
〈wi, vi−1〉A
〈vi−1, vi−1〉A

vi−1

Remark 4.5. {v0, v1, ..., vt} are A-orthogonal, i.e. vᵀiAvj = 0 if i 6= j

Lemma 4.6. Span{v0, ..., vt} = Span{b, Ab, · · · , Atb}
Proof. The argument proceeds inductively.

Span{v0} = Span{b}
Span{v0, v1} = Span{b, Ab}

...

Span{v0, · · · , vr} = Span{v0, · · · , vr−1, Avr−1}
= Span{b, Ab, · · ·Ar−1b, Avr−1} by induction

= Span{b, Ab, · · · , Arb}

�

4.3. Magic Item #2: Algorithm Runtime. We wish to know the runtime of the above pro-
cedure; however, things aren’t looking good since it appears we will need to compute O(t2) inner
products during Gram-Schmidt.

Theorem 4.7. For a given j, it is only necessary to orthogonalize wj+1 with respect to vj and vj−1

Proof.

vi ∈ Span{b, .., Aib}
wi+1 = Avi ∈ Span{Ab.., Ai+1b}

∈ Span{v + 0, .., vi+1}
5



Noting that vᵀjAvr = 0 ∀r < j,

vj is A-orthogonal to {v0, · · · , vi+1} if j > i+ 1

⇒ (wi+1)
ᵀAvj = 0 if j > i+ 1

⇔ (Avi)
ᵀAvj = 0

⇔ vᵀiA(Avj) = 0

⇔ vᵀiAwj+1 = 0

And so we need to orthogonalize wj+1 only with respect to vj , vj−1. �

Lemma 4.8. We can construct an A-orthogonal basis in O(t · (tA+n)) operations.

References

[HS52] Magnus Rudolph Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving
linear systems. 1952.

6


	Lecture 1 – Gradient Descent and Conjugate Gradient
	1. Introduction
	2. Solving PSD Systems
	3. Gradient Descent
	3.1. Gradient Descent Algorithm
	3.2. Algorithm Analysis
	3.3. Runtime

	4. Conjugate Gradient
	4.1. Magic Item #1: Separability
	4.2. Computing an A-orthogonal basis
	4.3. Magic Item #2: Algorithm Runtime

	References


