
CPSC 665 : An Algorithmist’s Toolkit Lecture 15 & 16 : 2 & 4 Mar 2015

Laplacian Systems and Randomized Kaczmarz
Lecturer: Sushant Sachdeva Scribe: Sam Anklesaria

1. Introduction to Laplacian Systems

Let G = (V,E) be a graph of m edges and v vertices. The matrix L is a Laplacian for graph G
if L =

∑
(x,y)∈E(ex − ey)T (ex − ey) where ex is the vector with a one in the x-th coordinate, and

zeros elsewhere. We can notice a few useful properties:

(1) L � 0
(2) L1 = 0, where 1 is the vector of all ones.
(3) If G is connected, L has only one zero eigenvalue.

Laplacian systems are of the form Lv = b. We can assume bT1 = 0. Even though L is not
invertible, if G is connected, ∃!v such that Lv = b and vT1 = 0. Then v = L+b, where L+ is the
pseudoinverse of L. In particular, if the spectral decomposition of L =

∑n
i=1 λiuiu

T
i has λi > 0 for

i ≥ 2, then the pseudoinverse L+ =
∑n

i=2
1
λi
uiu

T
i .

2. Application to Electrical Systems

Laplacians can be used to solve electrical systems. Assume G represents a network of resisters,
where each edge has resistance 1.

s

t

Say we send one unit of current along this network, with input at node s and output from node
t. What is the flow?

We can pick an arbitrary orientation for each edge. The flow on each edge f(x,y) will be positive
in the chosen direction and negative in the opposite direction. The net flow at a vertex x is the
amount current flowing out minus the amount of current flowing in:∑

y:(x,y)∈E

f(x,y) −
∑

y:(y,x)∈E

f(y,x) =

 1 if x = s
−1 if x = t
0 otherwise

More generally, we can use an n by m incidence matrix B. Each column will represent an edge,
(x, y) with a −1 the x-th position and a 1 in the y-th position. Then for any flow f , the net flow at
vertex v is just the v-th component of Bf . In the case of unit flow from s to t, Bf = es − et. The
system Bf = b will be referred to as the flow constraints, where b gives the net flow out of each
vertex.

The energy of a flow f is given by

E(f) =
∑

(x,y)∈E

1

2
f2(x,y) =

1

2
‖f‖2

The electrical flow through a system will be the flow that minimizes energy while satisfying the
flow constraints. So assuming the net flow out of each vertex is given by the vector b, we want to

1

pick f? to minimize 1
2 ‖f‖

2 such that Bf = b. We can solve this by minimizing the Lagrangian

L(f, v) = 1
2 ‖f‖

2−vT [Bf − b]. By the KKT conditions, d
dfL(f?, v?) = 0, so f? = BT v?. This factor

v? is simply the voltage of the system. Note that for each edge (x, y), (BT v)(x,y) = vx − vy, which

is just Ohm’s law. If f? = BT v? and Bf? = b, then (BBT)v? = b. But BBT is just the Laplacian
L. So we can solve for the electrical flow by solving the Laplacian system Lv? = b.

Laplacian systems can be solved using the standard semidefinite programming techniques, such
as gradient decent and conjugate gradient. If the graph G is an n cycle, then the condition
number λmax

λmin
of the Laplacian is κ(l) = Ω(n2) so conjugate gradient ∈ O(n(m + n) log(1/ε)).

But we can do better than O(n2). By [Spielman and Teng, 2004], we can compute x such that∥∥x− L+b
∥∥ ≤ ε

∥∥L+b
∥∥ in Õ(m log(1ε)), where Õ(f(n)) = O(f(n)poly(log(n)). We will present a

proof of this result from [Kelner et al., 2013], using the randomized Kaczmarz method.

3. Circulations

A vector z ∈ Rn such that Bz = 0 is called a circulation if ∀x, (Bz)x = 0. In other words, the
net flow at all vertices is 0.

As a simple example, consider a cycle c in the graph. Send 1 unit current along each edge in c-
we will denote this flow by 1c. Clearly, 1Tc f

∗ = 0. This is just Kirchoff’s Law. Other circulations
are just linear combinations of cycles- that is {z|Bz = 0} = span({1c|c is a cycle}).

Let T ⊆ G be a spanning tree for G. For any edge not in the spanning tree, adding that edge
creates a unique cycle:

∀e ∈ E(G) \ E(T), ∃!ce ∈ T ∪ {e}
This means an electric flow f must obey the following rules:

(1) Flow constraints: Bf = b
(2) Kirchoff’s Law: ∀e ∈ G \ T,1Tcef = 0 where 1ce is the unit circulation along the unique

cycle in T ∪ {e}.

4. Randomized Kaczmarz Method

The Kaczmarz method [’39] is a simple way of solving linear equations Ax = b. Start with
arbitrary values for x. While there are constraints that are violated, pick a violated constraint
aTi x = b and set x to its projection along that constraint.

xk+1 = xk +
bi − aTi xk
‖ai‖2

ai

This is represented visually in the diagram below:

aTi x = bi

xt

xt+1

For the Kaczmarz method, indeed for any method of alternating projections, we know∥∥xt+1 − x∗
∥∥2 ≤ ∥∥xt − x∗∥∥2 − ‖xt+1 − xt‖2

2

where x∗ lies at the intersection of all constraints. This property will be useful later on.
When solving electrical systems, the linear constraints along which we project will be the ones

given by Kirchoff’s law. This modified Kaczmarz method from [Strohmer and Vershynin, 2009]
proceeds as follows:

(1) Start with f0 such that Bf0 = b, so that the flow constraints are obeyed.
(2) For t = 1 . . . k sample e ∈ G \ T with probability proportional to |Ce| and set

ft = ft−1 −
1TCe

ft−1

‖1Ce‖
2 1Ce

Since B1Ce = 0 the update step will never cause the flow constraints to be violated. More specifi-
cally, let τ =

∑
e′∈G\T |Ce′ | and the probability pe of picking edge e be

|Ce|∑
e′ |Ce′ |

=
|Ce|
τ

We can show that the energy of the flow goes down multiplicatively with each step in expectation.
First, we show that any circulation is likely to have a large component in the basis direction 1Ce

picked according to distribution p. In particular, let Ĉe :=
1Ce

‖1Ce‖
.

Lemma 4.1. For any unit circulation ~g∑
e∈E\T

pe(~g
T Ĉe)

2 ≥ ‖~g‖
2

τ

Proof. Let P(a,b) consist of the unique path in spanning tree T from a to b. Then C(a,b) is just
(a, b) ∪ P(a,b). We can deconstruct the equation using this property.∑

e∈E\T

pe(~g
T Ĉe)

2 =
1

τ

∑
e∈E\T

(ge − ~gPe)2

≥ 1

τ

 ∑
e∈E\T

g2e − 2
∑
e∈E\T

ge · (~gTPe)

 =
1

τ

 ∑
e∈E\T

g2e − 2~gT
∑
e∈E\T

gePe


As ~g is a circulation, we know the values of its off tree edges from the values of its on tree edges.

∀e′ ∈ E :

− ∑
einE\T

gePe


e′

=

{
ge′ if e′ ∈ T
0 otherwise

Therefore: ∑
e∈E\T

pe(~g
T Ĉe)

2 ≥ 1

τ

 ∑
e∈E\T

g2e + 2
∑
e∈T

g2e

 ≥ ‖g‖2
τ

�

We can apply the lemma above to one iteration of the algorithm.

E[(ĈTe (ft − f∗))2] =
∑
e∈E\T

pe(Ĉ
T
e (ft − f∗))2 ≥

1

τ
·
∥∥ft − f∗∥∥2

As this randomized method is simply a specialized version of the general Kaczmarz method, we
know ‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − ‖xt+1 − xt‖2. This means, for our algorithm:∥∥ft − f∗∥∥2 − ∥∥ft+1 − f∗

∥∥ ≥ (ĈTe ft)
2

3

Therefore, the expected distance of the current solution to the optimal one decreases as

E[
∥∥ft − f∗∥∥2] ≤ (1− 1

τ

)t ∥∥f0 − f∗∥∥2
5. Implementation

To implement the Kaczmarz algorithm we just need two operations:

(1) Query: computing 1Tceft−1
(2) Update: computing ft−1 − α1ce .

We can modify these operations to efficiently store and update flows in T . Pick an arbitrary
fixed vertex s ∈ V to be the root. Adding α to every edge in the circulation C(a,b) is the same as
adding α to (a, b), adding −α to every edge in the path from s to b, and adding α to every edge in
the path from s to a.

Let (d, T0, T1, . . . , Tk) be a tree decomposition of T if the removal of d ∈ V partitions T into
subtrees T0 . . . Tk, where T0 is rooted at s and contains d as a leaf, while the other Ti are rooted at
d, and each Ti has at most n/2 + 1 vertices. For a spanning tree T rooted at s with n ≥ 2 vertices,
we can compute a tree decomposition in O(n) time by starting at s and recursively picking the edge
that leads to the largest subtree. Eventually we will find a d such that the size of all its subtrees
have no more than n/2 vertices, making d the desired vertex separator. We know such a d exists
thanks to Jordan in 1869.

Applying this idea recursively results in a separator decomposition tree of depth at most log(n).
For each subtree rooted at di we can maintain two values: di-drop, the total potential drop on the
path from s to di, and di-ext, the contribution to di drop from vertices beyond d. Flow along edges
in G \ T in are stored in a single array. This allows query and update operations to be performed
in O(log(n)) time.

6. Low Stretch Spanning Trees

[Kelner et al., 2013] showed that each iteration i of the algorithm computed a feasible fi ∈ RE
such that

E[E(fi)]− E(f?) ≤
(

1− 1

τ

)i (
E(f0)− E(f?)

)
Therefore, for the Kaczmarz algorithm to complete quickly, we need spanning trees for which

τ =
∑

e′∈G\T |Ce′ | is small. It turns out that τ is related to a property of spanning trees known as

stretch. Remember that P(a,b) consists the unique path in spanning tree T from a to b. Then the
stretch of some edge e is the length of Pe, and the stretch of T is the sum of the stretches of its
edges. This means that |Ce| = 1 + stretch(e), and consequently that τ = stretch(T) +m− 2n+ 2.

[Abraham and Neiman, 2012] gives an algorithm to construct low stretch spanning trees. Specif-
ically, there exists a spanning tree T ⊆ G such that∑

e∈G\T

‖Ce‖ = O(m log(n) log(log(n)))

which can be constructed in time O(m log(n) log(log(n))). If we use such a spanning tree with the

algorithm from [Kelner et al., 2013], in Õ(m log(1/ε)) time the algorithm can compute f such that
E[E(f)] ≤ (1 + ε)E(f?).

4

References

Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch spanning tree.
In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12,
pages 395–406, New York, NY, USA, 2012. ACM.

Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A simple, combi-
natorial algorithm for solving sdd systems in nearly-linear time. In Proceedings of the Forty-fifth
Annual ACM Symposium on Theory of Computing, STOC ’13, pages 911–920, New York, NY,
USA, 2013. ACM.

Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the Thirty-sixth Annual ACM
Symposium on Theory of Computing, STOC ’04, pages 81–90, New York, NY, USA, 2004. ACM.

Thomas Strohmer and Roman Vershynin. A randomized kaczmarz algorithm with exponential
convergence. Journal of Fourier Analysis and Applications, 15(2):262–278, 2009. ISSN 1069-
5869.

5

	Lecture 15 & 16 – Laplacian Systems and Randomized Kaczmarz
	1. Introduction to Laplacian Systems
	2. Application to Electrical Systems
	3. Circulations
	4. Randomized Kaczmarz Method
	5. Implementation
	6. Low Stretch Spanning Trees
	References

