
CPSC 665 : An Algorithmist’s Toolkit Lecture 3 : 16 Jan 2015

Dimension Reduction
Lecturer: Sushant Sachdeva Scribe: Xiao Shi

1. Introduction

The “curse of dimensionality” refers to various phenomena that arise when analyzing and or-
ganizing data in high dimensions. For example, the solution to nearest neighbor problem grows
exponentially with the dimension. Therefore dimension reduction, the process of representing data
in lower dimensions while preserving the essential properties, is very useful. Common techniques in-
clude Singular Value Decomposition (SVD). This lecture covers the Johnson-Lindenstrauss Lemma
and how to preserve distance information in data.

2. Problem Statement

We first consider whether we could preserve the distance under dimension reduction.

HW 1. Prove: given X = {0, e1, . . . , en} ∈ Rn where ei is the standard basis, ∃f : X 7→ Rd such
that

∥∥f(xi)− f(xj)
∥∥ =

∥∥xi − xj
∥∥⇒ d ≥ n.

The above proposition states that to maintain the exact distance for Rn vectors, we need a space
with no fewer dimensions. How about approximation?

Let X = {x1,x2, . . . ,xn} ⊆ Rn, does there exist a function f : X 7→ Rd such that d � n and∥∥f(xi)− f(xj)
∥∥ ≈ ∥∥xi − xj

∥∥?

The distance here strictly refers to the L2 norm.

3. The Johnson-Lindenstrauss Lemma

Lemma 3.1 (Johnson-Lindenstrauss Lemma). For any ε ∈ (0, 1/2] and x1,x2, . . . ,xn ∈ Rn, there
exists a linear mapping L : Rn 7→ Rd for d = O(ε−2 log n) such that

(*) ∀i, j (1− ε)
∥∥xi − xj

∥∥ ≤ ∥∥Lxi − Lxj∥∥ ≤ (1 + ε)
∥∥xi − xj

∥∥
Lemma 3.2. There is a poly-time samplable distribution on L such that L satisfies (*) with prob-
ability at least 1− 1/n.

4. Proof of the Johnson-Lindenstrauss Lemma

4.1. One-dimensional Gaussians. g ∼ N(µ, σ2) is the Gaussian (normal) distribution, where
µ ∈ R is the mean of the distribution and σ2 ∈ R+ is the variance. The probability distribution
function of g is

p(x) = 1/σ
√
2π exp(−(x−µ)2/2σ2).

g ∼ N(0, 1) is the unit Gaussian with p(x) = 1/
√
2πexp(−x2/2). In general, we have g ∼ N(0, 1) ⇒

µ+ σg ∼ N(µ, σ2).
If g1 ∼ N(0, σ21) and g2 ∼ N(0, σ22) are independent Gaussians, then g1 + g2 ∼ N(0, σ21 + σ22).

(Can be proved by using the characteristic functions.)
1



−6 −4 −2 0 2 4 6

0

0.1

0.2

0.3

0.4 N(0, 1)

N(2, 3)

4.2. Main lemma.

Lemma 4.1. Let R be a d×n matrix such that Rij is an independent unit Gaussian N(0, 1), then
for a fixed unit vector v ∈ Rn (i.e. ‖v‖ = 1), for d = O

(
1/ε2 log 1/δ

)
,

(**) Pr

[
1− ε ≤ ‖Rv‖√

d
≤ 1 + ε

]
≥ 1− δ

4.2.1. Implication. This lemma implies the Johnson-Lindenstrauss Lemma.
First we notice that v in this lemma is a unit vector. We want to drop the “unit” constraint by

simply adding ‖v‖:

Pr

[
(1− ε) ‖v‖ ≤ ‖Rv‖√

d
≤ (1 + ε) ‖v‖

]
≥ 1− δ.

Let L = 1/
√
dR, and v ∈

{
xi − xj , 1 ≤ i < j ≤ n

}
(
(
n
2

)
vectors),

(**)⇒ ∀ fixed i < j, Pr
[
(1− ε)

∥∥xi − xj
∥∥ ≤ ∥∥Lxi − Lxj∥∥ ≤ (1 + ε)

∥∥xi − xj
∥∥] ≥ 1− δ.

Now we want to generalize this result for all vectors instead of fixed ones. By union bound on the(
n
2

)
vectors, we have

Pr
[
∀i < j, (1− ε)

∥∥xi − xj
∥∥ ≤ ∥∥Lxi − Lxj∥∥ ≤ (1 + ε)

∥∥xi − xj
∥∥] ≥ 1−

(
n

2

)
δ.

Pick δ = 1/
(
n(n2)

)
= Ω(n−3),

d = O
(
1/ε2 log 1/δ

)
= O

(
1/ε2 log n

)
,

which gives the Johnson-Lindenstrauss Lemma.

4.2.2. Proof of the main lemma. Consider using the row vectors of R, suppose Ri is the ith row of
R.

(Rv)i = RTi v =
∑
j

vjRij .

Hence

(**)⇔ Pr

(1− ε)2 ≤ 1/d

∑
i

(Rv)2i

 ≤ (1 + ε)2

 ≥ 1− δ.
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Since Rij ∼ N(0, 1), we use the additive properties of Gaussians in the previous section,

(Rv)i ∼ N

0,
∑
j

v2
j

 = N(0, 1).

Now we only need to prove:

(1) Pr

 d∑
i=1

g2i ≥ (1 + ε)2d

 ≤ δ/2

and

(2) Pr

 d∑
i=1

g2i ≤ (1− ε)2d

 ≤ δ/2,

where gi ∼ N(0, 1) are independent and identically distributed unit Gaussians.
(1) follows from ∀λ ≥ 0, by Markov’s inequality,

Pr

exp

λ d∑
i=1

g2i

 ≥ exp
(
λd(1 + ε)2

) ≤ exp
(
−λd(1 + ε)2

)
E

exp

λ d∑
i=1

g2i


 ,

Because gi are independent and identically distributed,

= exp
(
−λd(1 + ε)2

) d∏
i=1

E

[
exp

(
λg2i

)]

= exp
(
−λd(1 + ε)2

)(
E

[
exp

(
λg2
)])d

≤ exp
(
−λd(1 + ε)2 − d/2 log (1− 2λ)

)
where g ∼ N(0, 1). Since

E
[
λg2
]

=

∫ ∞
−∞

eλx
2 ·
(
1/
√
2π
)
e−

x2/2dx

= 1/
√
2π

∫ ∞
−∞

exp
(
−(1− 2λ)x2/2

)
dx = 1/

√
1−2λ

The easiest way to see the above is that the probability distribution function of N(0, 1/1−2λ) is

p(x) =

√
1− 2λ√

2π
exp

(
−(1− 2λ)x2/2

)
.

Now we optimize for λ. Differentiate the above,

−d(1 + ε)2 − d

2
· −2

(1− 2λ)
= 0.

And we get

λ =
1

2

(
1− 1

(1 + ε)2

)
.
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Substituting in λ, and given log(1 + ε) ≤ ε:

Pr

 d∑
i=1

g2i ≥ (1 + ε)2d


≤ exp

(
−d
(

(1 + ε)2 − 1
)
/2− d/2 log(1 + ε)

)
≤ exp

(
−d(ε+ ε2/2) + dε

)
= exp

(
−dε2/2

)
Similarly for (2), pick d = 2/ε2 log

(
2/δ
)
, we will get ≤ δ

2 .

5. Tightness of JL-Lemma

Alon (also Larson-Nelson) stated that if n vectors f1, f2, . . . , fn ∈ Rd, and 1−ε ≤
∥∥fi − fj

∥∥ ≤ 1+ε,
then

d = Ω

(
log n

ε2 log 1/ε

)
.

6. Rotational Invariance

Recall the d× n matrix R where Rij ∼ N(0, 1), ∀x ∈ Rn,

p(x) =
n∏
i=1

1√
2π
e−

x2i/2 =
1

(2π)d/2
exp

(
−1/2 ‖x‖2

)
.

The probability distribution function only depends on ‖x‖, but not the direction. We call this
property “rotational invariance.”

Formally, if we have orthogonal matrix O ∈ Rn×n (orthogonal means OTO = In×n) and a
Gaussian vector x ∼ N(0, 1)n×1, then Ox, rotating the vector x, would also be Gaussian, i.e.,
Ox ∼ N(0, 1)n×1.

A useful application of the rotational invariance of Gaussian vectors is to sample random unit
vectors. Sample Gaussian vector x ∼ N(0, 1)n×1, then x

‖x‖ is a random unit vector desired.

7. Original JL-Lemma

Johnson and Lindenstrauss originally proved the lemma for uniformly random d-dimensional
subspace using L such that LTL is the projection matrix onto the subspace. Dasgupta and Gupta
then proved the JL-Lemma using Gaussians. The original claim and proof is the following.

7.1. Claim. For a fixed unit vector v, P is a projection onto a uniformly random d-dimensional
subspace, then ‖Pv‖2 is strongly concentrated. This claim is equivalent to the following statement.
For a fixed projection Π onto {e1, e2, . . . , ed} (where ei are the first d coordinates, v is a uniformly

random unit vector, then ‖Πv‖2 is strongly concentrated.

7.2. Proof. We sample x ∼ N(0, 1)n×1 (independently) as an n-dimensional Gaussian vector, and

let v = x
‖x‖ . Πv = (v1, v2, . . . , vd). We want to proof that ‖Πv‖2 =

∑d
i=1 v

2
i is concentrated.

Since by symmetry, ∀i,E
[
v2i
]

= 1
n , hence E

[∑d
i=1 v

2
i

]
= d/n. Therefore, we want to bound (1)

Pr
[∑d

i=1 v
2
i ≥ (1 + ε)2d/n

]
and (2) Pr

[∑d
i=1 v

2
i ≤ (1− ε)2d/n

]
.
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(5) = Pr

[∑d
i=1 x

2
i∑n

i=1 x
2
i

≥ (1 + ε)2d/n

]

= Pr

1

d

d∑
i=1

x2i −
(1 + ε)2

n

 n∑
i=1

x2i

 ≥ 0


= Pr

(1

d
− (1 + ε)2

n

)
d∑
i=1

x2i −
(1 + ε)2

n

 n∑
i=d+1

x2i

 ≥ 0


Now we use the independence of xi and Chernoff bound, which produced the same result:

(5) ≤ exp

(
−d

2

(
(1 + ε)2 − 1

)
+
d

2
log (1 + ε)2

)
HW 2. Consider the following two ways of sampling a d-dimensional subspace:

(1) Sample a uniformly random unit vector u1. For 2 ≤ i ≤ d, sample a uniformly random unit
vector ui that is orthogonal to {u1, u2, . . . , ui−1}. Output span(u1, u2, . . . , ud).

(2) Sample gi ∼ N(0, 1)n×1, output span(g1, . . . , gd).

Prove that up to zero probability events, both generate a uniformly random d-dimensional sub-
space.
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