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1. The General Framework and Some Examples

A general problem is minimizing a convex function f over a convex domain K ⊂ Rn.
We can define a convex domain K ⊂ Rn by giving a set of convex functions {fi} : Rn → R and

setting

K = {x ∈ R|fi(x) ≤ 0 for all fi}.
That K is convex follows from the fact that {x|fi(x) ≤ 0} is convex for each fi and that the intersec-
tion of convex sets is convex. We can see that linear programming and semi-definite programming
are special cases of convex optimization.

Another example of convex optimization is linear regression (aka least-squares regression). We
are given data points ai ∈ Rn, bi ∈ R and think of the bi as a function f of the ai. Specifically,
we suppose f is linear and want to find the “best” approximation for the data. That is, we seek
a x ∈ Rn such that ai · x ≈ bi. The amount of error is given by err(i) = |ai · x − bi|. We try to
minimize the L2 norm of the error function. Explicitly, we have the minimization problem

min
x∈Rn

‖Ax− b‖22,

where A ∈Mn(R) is a matrix with the ai as rows. This is a convex optimization problem because
the L2 norm is a convex function (by the triangle inequality).

2. The Lagrange Dual to a Convex Problem

Consider the problem of minimizing a function f0(x) such that for i ∈ [m], fi(x) ≤ 0 and for
j ∈ [k], aj · x = bj . Call this program P for primal.

For i ∈ [m], λi ≥ 0, j ∈ [k], and µj ∈ R, we must have

f0(x) +
m∑
i=1

λifi(x) +
k∑
j=1

µj(aj · x− bj) ≤ f0(x)

for feasible x ∈ Rn. The left hand side of that inequality is called the Lagrangian and denoted
L(x, λ, µ).

To obtain a lower bound for P , we can compute the program

g(λ, µ) = min
x feasible for P

L(x, λ, u).

The function g is called the Lagrange dual of P .
L is linear in λ and µ. Thus, g is concave in λ and µ. The best lower bound is

max
λ≥0
µ∈R

g(λ, µ).

This program is called the Lagrange dual program and denoted D. We’ll say (λ, µ) is feasible if
g(λ, µ) > −∞. Let

K ′ = {(λ, µ)|λ ≥ 0, g(λ, µ) > −∞}
denote the set of feasible (λ, µ) pairs. Note that K ′ is convex.

We have the following duality theorem:
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Theorem 2.1 (Weak Duality). Let be x be feasible for P , x∗ optimal, λ, µ feasible for D, λ∗, µ∗

optimal. Then
g(λ, µ) ≤ g(λ∗, µ∗) ≤ f0(x∗) ≤ f0(x).

We can see how this applies to linear programs. If the linear program is minimizing c · x with
constraints −ai · x+ bi ≤ 0, then

L(x, y) = c · x+
∑
i

yi(−ai · x+ bi)

= c · x+ y · (−Ax+ b)

= y · b+ (c− yTA) ·X
and

g(y) = min
x
L(x, y).

This gives us the familiar dual program max b · y such that y ≥ 0 and AT y = c.
We have an equivalence of sets

{y|y ≥ 0, AT y = c} = {y|min
x
L(x, y) > −∞}.

We can rewrite the problem as maxy≥0 b ·y+g′(y) where g′(y) = minx∈Rn(cT −ytA)x. The function
g′(y) is an indicator function for the feasibility region of the problem and allows us to remove the
AT y = c constraint. We thus may rewrite the problem in the simpler form

max
y≥0

min
x∈Rn

L(x, y).

Weak duality can now be restated as

max
y≥0

min
x∈Rn

L(x, y) ≤ min
x∈Rn

max
y≥0

L(x, y).

(It’s homework to show that all this in fact holds for all f(x, y) : Rn × Rn → R.)
Now, we come to strong duality, where this machinery becomes much more useful.

Definition 2.2. We say a program satisfies strong duality when the primal and the dual program
are feasible and p∗ = d∗.

Theorem 2.3 (Slater’s Condition). If a convex program is strictly feasible, strong duality holds.

Strictly feasible means there is a feasible point that strictly satisfies the constraints i.e. the
feasible region has a non-empty interior.

In fact, we can do slightly better than Slater’s condition; it suffices to have an x that strictly
satisfies the non-affine constraints.

We also have a generalized version of complementary slackness.

Lemma 2.4. If λ∗, µ∗, and x∗ are feasible, optimal, and strong duality holds for P and D then
λ∗i fi(x

∗
i ) = 0.

Proof. Using strong duality, we have

f0(x
∗) = g(λ∗, µ∗)

= min
x
f0(x) +

∑
i

λ∗i fi(x) +
∑
j

µ∗j (aj · x− bj)

≤ f0(x∗) +
∑
i

λ∗i fi(x
∗) +

∑
j

µ∗j (aj · x∗ − bj)

= f0(x
∗).

It is immediate that λ∗i fi(x
∗) = 0. �
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