Lecture title

Lecturer: Sushant Sachdeva
Scribe: Anup Rao

1. Introduction

In this lecture we talked about convexity, and some inequalities that follows as a result of it. We started off with an elegant proof of Caucy-Schwarz inequality. We then defined convexity for general functions, and then studied various equivalent characterizations for special classes (continuos functions, differentiable functions etc...) of functions and proved a fundamental inequality satisfied by convex functions called Jensen's inequality. Finally, we used Jensen's inequality to prove Holder's inequality.

2. Cauchy-Schwarz Inequality

Theorem 2.1 (Caucy-Schwarz Inequality). Suppose $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{n}$, then

$$
\boldsymbol{a}^{T} \boldsymbol{b} \leq\|\boldsymbol{a}\|\|\boldsymbol{b}\| .
$$

Proof. We first observe that it is sufficient to prove the above inequality when the vectors have unit norm $\|a\|=1=\|b\|$. This is because if $\boldsymbol{a}, \boldsymbol{b}$ don't satisfy the unit norm condition, then we can apply the above inequality to the vectors $\frac{a}{\|a\|}, \frac{b}{\|b\| \|}$.

We therefore assume without loss of generality that $\|\boldsymbol{a}\|=1=\|\boldsymbol{b}\|$. Now we note the following simple inequality

$$
x y \leq \frac{x^{2}+y^{2}}{2}, \forall x, y \in \mathbb{R}
$$

We start from the left hand side

$$
\begin{aligned}
\boldsymbol{a}^{T} \boldsymbol{b} & =\sum_{i} a_{i} b_{i} \\
& \leq \sum_{i} \frac{a_{i}^{2}+b_{i}^{2}}{2} \\
& =1 / 2 \sum_{i} a_{i}^{2}+1 / 2 \sum_{i} b_{i}^{2} \\
& =1 .
\end{aligned}
$$

The last inequality follows from the unit norm assumption.

3. Convexity and Jensen's Inequality

Definition 3.1 (Convexity of a set). A set $K \subset \mathbb{R}^{n}$ is said to be a convex set if $\forall \boldsymbol{x}, \boldsymbol{y} \in K, \lambda \in$ $[0,1]$

$$
\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y} \in K
$$

In words, a set K is convex if for any two points $\boldsymbol{x}, \boldsymbol{y} \in K$, the line segment joining \boldsymbol{x} and \boldsymbol{y} is also contained in K.

Convex set

Not a convex set

Now we define what it means to say that a function is convex.
Definition 3.2 (Convexity of a function). A function $f: K \rightarrow \mathbb{R}$ is said to be convex function if $\operatorname{dom}(f)=K$ is a convex set, and $\forall \boldsymbol{x}, \boldsymbol{y} \in K, \lambda \in[0,1]$

$$
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \leq \lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y})
$$

When $f: \mathbb{R} \rightarrow \mathbb{R}$, this means that the line segment joining $f(x)$ and $f(y)$ is above the function f. Therefore, in this case, we have for all $x, y \in \mathbb{R}$ and $z \in[x, y]$

$$
f(z) \leq f(x)+\frac{f(y)-f(x)}{y-x}(z-x)
$$

We now give some equivalent characterizations of convexity which are easier to verify.
Continuous functions: If $f(x)$ is a continuous function, then $f(\boldsymbol{x})$ is convex iff for all $\boldsymbol{x}, \boldsymbol{y} \in K$

$$
f\left(\frac{\boldsymbol{x}+\boldsymbol{y}}{2}\right) \leq \frac{f(\boldsymbol{x})+f(\boldsymbol{y})}{2}
$$

That is, if a function is continuous, then to check if it is convex, we can take $\lambda=1 / 2$ in the definition of convex functions.
Differentiable functions: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f is convex iff for all $x, y \in \mathbb{R}$,

$$
f(x) \geq f(y)+f^{\prime}(y)(x-y)
$$

Proof. In one direction, we have from the convexity of f

$$
f(x)-f(y) \geq \frac{f(\lambda x+(1-\lambda) y)-f(y)}{\lambda}
$$

Now letting $\lambda \rightarrow 0$ we get that $f(x)-f(y) \geq f^{\prime}(x)(x-y)$. For the other direction, let $z=\lambda x+(1-\lambda) y$. We then have

$$
\begin{aligned}
& f(x) \geq f(z)+f^{\prime}(z)(x-z) \\
& f(y) \geq f(z)+f^{\prime}(z)(y-z)
\end{aligned}
$$

Multiplying the first inequality by λ, the second one by $1-\lambda$ and adding the two gives

$$
\lambda f(x)+(1-\lambda) f(y) \geq f(z)=f(\lambda x+(1-\lambda) y)
$$

Twice Differentiable functions: If a function f is twice differentiable, then f is convex iff for all x in the domain of f

$$
f^{\prime \prime}(x) \geq 0
$$

This immediately implies that $f(x)=e^{x}$ and $f(x)=-\log x$ are convex functions.

Remark 3.3. Even when a convex function is not differentiable (e.g.. $f(x)=|x|$), there is a relaxation of the notion of the derivative(s) for a convex function. At any point x in the domain, we can assign a non empty convex set of subderivatives, denoted by $\partial f(x)$, such that any $c \in \partial f(x)$ satisfies

$$
f(x) \geq f(y)+c(x-y) .
$$

We now state some inequalities for $f(x)=e^{x}$ that we can now prove that are often very useful. Since e^{x} is a convex function which is differentiable, we have that for all x, y,

$$
e^{y} \geq e^{x}+e^{x}(y-x)
$$

Taking $x=0$, we immediately get that for all $y \in \mathbb{R}$

$$
\begin{equation*}
1+y \leq e^{y} \tag{1}
\end{equation*}
$$

Next, using the definition of convexity, we have for all $x, y \in \mathbb{R}$ and $z \in[x, y]$

$$
e^{z} \leq e^{x}+\frac{e^{y}-e^{x}}{y-x}(z-x)
$$

Letting $x=0, y=1$, we have for all $z \in[0,1]$

$$
\begin{equation*}
e^{z} \leq 1+(e-1) z . \tag{2}
\end{equation*}
$$

The above results readily generalizes to multidimensional case. Before we state the results, let us first introduce some notations. For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we define the gradient of f at $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ to be

$$
\nabla f(\boldsymbol{x}):=\left(\frac{\partial f}{\partial x_{1}}, . ., \frac{\partial f}{\partial x_{n}}\right)
$$

This is the generalization of the notion of derivative for functions defined on \mathbb{R}. The multivariate notion of second derivative is called the Hessian of f. Hessian of f at $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is the the $n \times n$ matrix

$$
\nabla^{2} f(\boldsymbol{x}):=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i j}
$$

We are now ready to state the results in the multidimensional case.
Differentiable functions: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then f is convex iff for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$,

$$
f(\boldsymbol{x}) \geq f(\boldsymbol{y})+\nabla f(y)^{T}(\boldsymbol{x}-\boldsymbol{y})
$$

Note that as in the remark 3.3 for the single variable case, even if a convex function is not differentiable, at any point \boldsymbol{y} in the domain, we assign a non-empty convex subset $\left.\partial f(\boldsymbol{y}) \subset \mathbb{R}^{n}\right)$ of subgradients. Furthermore, for any $\boldsymbol{v} \in \partial f(\boldsymbol{y})$ the following holds

$$
f(\boldsymbol{x}) \geq f(\boldsymbol{y})+\boldsymbol{v}^{T}(\boldsymbol{x}-\boldsymbol{y}) .
$$

Twice Differentiable functions: If a function f is twice differentiable, then f is convex iff for all \boldsymbol{x} in the domain of f and all $\boldsymbol{\zeta} \in \mathbb{R}^{n}$

$$
\boldsymbol{\zeta}^{T}\left(\nabla^{2} f(\boldsymbol{x})\right) \boldsymbol{\zeta} \geq 0 .
$$

Jensen's inequality. Now we can state and prove a fundamental inequality satisfied by convex functions, from which most other inequalities can be derived.

Theorem 3.4 (Jensen's Inequality). Suppose f is a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and $X \in \mathbb{R}^{n}$ is a random variable. Then

$$
f(\mathbf{E} X) \leq \mathbf{E} f(X) .
$$

Proof. From the convexity of f, we have for all \boldsymbol{y}

$$
f(X) \geq f(\mathbf{E} X)+\nabla f(\mathbf{E} X)^{T}(\boldsymbol{y}-\mathbf{E} X) .
$$

Since the above inequality holds deterministically for all \boldsymbol{y}, we can replace \boldsymbol{y} with X to get

$$
f(X) \geq f(\mathbf{E} X)+\nabla f(\mathbf{E} X)^{T}(X-\mathbf{E} X)
$$

The above inequality should also hold in expectation. This gives

$$
\begin{aligned}
\mathbf{E} f(X) & \geq \mathbf{E}\left(f(\mathbf{E} X)+\nabla f(\mathbf{E} X)^{T}(\boldsymbol{y}-\mathbf{E} X)\right) \\
& =f(\mathbf{E} X)
\end{aligned}
$$

Remark 3.5. This proof goes through even for non differentiable functions by using subdgradients. We can replace $\nabla f(\mathbf{E} X)$ in the above proof by any subgradient $\boldsymbol{v} \in \partial f(\mathbf{E} X)$.

4. Holder's Inequality

Now we use Jensen's inequality and ideas from Cauchy-Schwarz inequality to prove a generalization of the latter. For $\boldsymbol{x} \in \mathbb{R}^{n}$, we let $\|\boldsymbol{x}\|_{p}:=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$. We extend this to $p=\infty$ by letting $\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$. Holder's inequality states the following
Holder's Inequality: Let $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{n}$. Further $\infty>p \geq 1$ be any number and $q \geq 1$ be such that $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\boldsymbol{a}^{T} \boldsymbol{b} \leq\|\boldsymbol{a}\|_{p}\|\boldsymbol{b}\|_{q} .
$$

To prove this, we mimic the proof in the first section. One key additional inequality we will need is stated in the following lemma.
Lemma 4.1 (Young's Lemma). For scalars $x, y \geq 0$ and $p, q \in(0, \infty)$ such that $\frac{1}{p}+\frac{1}{q}=1$,

$$
x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q} .
$$

Proof. Let us rewrite the above inequality in a way such that we can apply Jensen's inequality. Taking the logarithm on both sides, we see that the inequality is equivalent to

$$
\begin{equation*}
\log x+\log y \leq \log \left(\frac{x^{p}}{p}+\frac{y^{q}}{q}\right) . \tag{3}
\end{equation*}
$$

With the goal of writing left hand side as an expectation of a random variable, and since $\frac{1}{p}+\frac{1}{q}=1$, we rewrite (3) as

$$
\frac{1}{p} \log x^{p}+\frac{1}{q} \log y^{q} \leq \log \left(\frac{x^{p}}{p}+\frac{y^{q}}{q}\right)
$$

Finally, multiplying throughout by -1 , we have

$$
-\frac{1}{p} \log x^{p}-\frac{1}{q} \log y^{q} \geq-\log \left(\frac{x^{p}}{p}+\frac{y^{q}}{q}\right) .
$$

This immediately follows by apply Jensen's inequality to the convex function $f(x)=-\log x$ and the random variable $X=\left\{\begin{array}{lll}a^{p} & \text { w.p. } & \frac{1}{p} \\ b^{q} & \text { w.p. } & \frac{1}{q}\end{array}\right.$.

We are finally ready to prove Holder's inequality.
Theorem 4.2 (Holder's inequality). Let $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{n}$. Further $\infty>p \geq 1$ be any number and $q \geq 1$ be such that $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\boldsymbol{a}^{T} \boldsymbol{b} \leq\|\boldsymbol{a}\|_{p}\|\boldsymbol{b}\|_{q} .
$$

Proof. As in the proof Cauchy-Schwarz inequality, we note that without loss of generality, we can assume $\|\boldsymbol{a}\|_{p}=1=\|\boldsymbol{b}\|_{q}$. Now,

$$
\begin{aligned}
\boldsymbol{a}^{T} \boldsymbol{b} & =\sum_{i} a_{i} b_{i} \\
& \leq \sum_{i} \frac{a_{i}^{p}}{p}+\frac{b_{i}^{q}}{q}(\text { by Young's Lemma) } \\
& =1 / p \sum_{i} a_{i}^{p}+1 / q \sum_{i} b_{i}^{q} \\
& =1 / p+1 / q\left(\text { since }\|\boldsymbol{a}\|_{p}=1=\|\boldsymbol{b}\|_{q}\right) \\
& =1 .
\end{aligned}
$$

HW 1 (Triange Inequality): Prove triangle inequality for p norms. That is, prove that for any $p \geq 1$ and $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{n}$,

$$
\|\boldsymbol{a}+\boldsymbol{b}\|_{p} \leq\|\boldsymbol{a}\|_{p}+\|\boldsymbol{b}\|_{p} .
$$

HW 2 (Generalized Means Inequality): For all $a, b \geq 0$, prove that

$$
M_{p}=\left(\frac{a^{p}+b^{p}}{2}\right)^{1 / p}
$$

is an increasing function of p. Here p is allowed to take all real values.

