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Lecture title
Lecturer: Sushant Sachdeva Scribe: Anup Rao

1. INTRODUCTION

In this lecture we talked about convexity, and some inequalities that follows as a result of it.
We started off with an elegant proof of Caucy-Schwarz inequality. We then defined convexity for
general functions, and then studied various equivalent characterizations for special classes (con-
tinuos functions, differentiable functions etc...) of functions and proved a fundamental inequality
satisfied by convex functions called Jensen’s inequality. Finally, we used Jensen’s inequality to
prove Holder’s inequality.

2. CAUCHY-SCHWARZ INEQUALITY
Theorem 2.1 (Caucy-Schwarz Inequality). Suppose a,b € R", then
T
a’ b <|allb].

Proof. We first observe that it is sufficient to prove the above inequality when the vectors have unit
norm ||a|| = 1 = ||b]|]. This is because if a, b don’t satisfy the unit norm condition, then we can
apply the above inequality to the vectors m, ﬁ.

We therefore assume without loss of generality that ||a|| =1 = ||b||. Now we note the following
simple inequality
2,2
x
Ty < —;—y Vo, y € R.

We start from the left hand side

aTb = Zaibi
a?+bf
Pt

=1/2) af +1/2> b7
=1.

The last inequality follows from the unit norm assumption.

3. CONVEXITY AND JENSEN’S INEQUALITY
Definition 3.1 (Convexity of a set). A set K C R" is said to be a convex set if Ve,y € K, \ €
[0,1]
A+ (1-Ny e K.
In words, a set K is convex if for any two points x,y € K, the line segment joining & and y is

also contained in K.
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Convex set Not a convex set

Now we define what it means to say that a function is convex.

Definition 3.2 (Convexity of a function). A function f: K — R is said to be convex function
if dom(f) = K is a convex set, and Vx,y € K, X € [0, 1]

[z + (1= N)y) <Af(z) + (1= N f(y)

When f: R — R, this means that the line segment joining f(x) and f(y) is above the function
f. Therefore, in this case, we have for all z,y € R and z € [z, ]

fly) — f(x)
f@) < fl@) + —=———(z—a).
y—x
We now give some equivalent characterizations of convexity which are easier to verify.
Continuous functions: If f(x) is a continuous function, then f(x) is convex iff for all ,y € K

z+y, _ flz)+ f(y)
5 .

15 <

That is, if a function is continuous, then to check if it is convex, we can take A = 1/2 in
the definition of convex functions.
Differentiable functions: If f : R — R is differentiable, then f is convex iff for all x,y € R,

f@) = fy) + f )@ —y).
Proof. In one direction, we have from the convexity of f

fQz+ (1 -Ny) - fy)
flx) = fly) > 3 .

Now letting A\ — 0 we get that f(z) — f(y) > f'(z)(x — y). For the other direction, let
z=Ar+ (1 —\)y. We then have

f(@) = f(2) + f(2)(z — 2)
fy) = f(z) + f(2)(y — 2).
Multiplying the first inequality by A, the second one by 1 — A and adding the two gives
(@) + (1= NF) > F(2) = FOx+ (1= \y).




Twice Differentiable functions: If a function f is twice differentiable, then f is convex iff for
all x in the domain of f

7'(2) > 0.
This immediately implies that f(z) = e® and f(z) = —logx are convex functions.
Remark 3.3. Even when a convex function is not differentiable (e.g.. f(x) = |x|), there is a

relazation of the notion of the derivative(s) for a convex function. At any point x in the domain,
we can assign a non empty convex set of subderivatives, denoted by Of(x), such that any c € Of(x)
satisfies

f(@) > f(y) +c(z —y).

We now state some inequalities for f(z) = e that we can now prove that are often very useful.
Since e” is a convex function which is differentiable, we have that for all z, vy,

e >e" +e(y — ).
Taking z = 0, we immediately get that for all y € R
(1) 1+y<év.
Next, using the definition of convexity, we have for all z,y € R and z € [z, y]
z
eZ : ; (z — z).

e < e+

Letting 2 = 0,y = 1, we have for all z € [0, 1]
(2) e <1+ (e—1)z.

The above results readily generalizes to multidimensional case. Before we state the results, let
us first introduce some notations. For a function f : R®™ — R, we define the gradient of f at
x = (x1,...,2) € R" to be

0 0
Vfi(x):= (axfl, o 5’1{1)

This is the generalization of the notion of derivative for functions defined on R. The multivariate
notion of second derivative is called the Hessian of f. Hessian of f at @ = (x1,...,x,) € R™ is the

the n X n matrix
0% f
2 ._
Vof(x) = <8:U1'8:L‘j>
ij

We are now ready to state the results in the multidimensional case.
Differentiable functions: If f : R™ — R is differentiable, then f is convex iff for all x,y € R",

flx) > fly)+ Vi (z —y).

Note that as in the remark for the single variable case, even if a convex function is
not differentiable, at any point y in the domain, we assign a non-empty convex subset
0f(y) C R™) of subgradients. Furthermore, for any v € df(y) the following holds

fl@) = fly)+ v (z—y).

Twice Differentiable functions: If a function f is twice differentiable, then f is convex iff for
all  in the domain of f and all ¢ € R™

¢H(V2f(z))¢ > 0.
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Jensen’s inequality. Now we can state and prove a fundamental inequality satisfied by convex
functions, from which most other inequalities can be derived.

Theorem 3.4 (Jensen’s Inequality). Suppose f is a convex function f : R"™ — R, and X € R" is
a random variable. Then

FEX) <Ef(X).

Proof. From the convexity of f, we have for all y

f(X) > FEX) + VIEX) (y - BX).
Since the above inequality holds deterministically for all y, we can replace y with X to get

F(X) = F(BX) + VEX)T (X ~EX),
The above inequality should also hold in expectation. This gives

E f(X) > E(f(EX) + Vf(EX)"(y - EX))
= f(EX).
O

Remark 3.5. This proof goes through even for non differentiable functions by using subdgradients.
We can replace V f(E X) in the above proof by any subgradient v € 0f(E X).

4. HOLDER’S INEQUALITY

Now we use Jensen’s inequality and ideas from Cauchy-Schwarz inequality to prove a general-
ization of the latter. For z € R", we let |z[|, :== (3_; |2;|P)1/P. We extend this to p = oo by letting
|||, = max; |z;|. Holder’s inequality states the following
Holder’s Inequality: Let a,b € R"™. Further co > p > 1 be any number and ¢ > 1 be such that

1 1 _

E+a = 1. Then
T
a’b<|al,lbl,-

To prove this, we mimic the proof in the first section. One key additional inequality we will need
is stated in the following lemma.

Lemma 4.1 (Young’s Lemma). For scalars x,y > 0 and p,q € (0,00) such that ]13 + é =1,

ry < — + —.
p q

Proof. Let us rewrite the above inequality in a way such that we can apply Jensen’s inequality.
Taking the logarithm on both sides, we see that the inequality is equivalent to

(3) logx + logy < log (—|—> .
p q

With the goal of writing left hand side as an expectation of a random variable, and since % + % =1,

we rewrite as
1 1 P q
—loga? + —logy? < log (x + y) .
p q p q

Finally, multiplying throughout by —1, we have

1 1 P g0
——loga? — —logy? > —log <x + y) .
p q p q
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This immediately follows by apply Jensen’s inequality to the convex function f(z) = —logx and

. a’  w.p.
the random variable X =

QS =

b?  w.p.
We are finally ready to prove Holder’s inequality.
Theorem 4.2 (Holder’s inequality). Let a,b € R™. Further oo > p > 1 be any number and q > 1
be such that % + % = 1. Then
T
a’ b <|al,lbl,-

Proof. As in the proof Cauchy-Schwarz inequality, we note that without loss of generality, we can
assume |all, =1 =[|b]|,. Now,

aTb = Z aibi
i
< -+ + -t (by Young’s Lemma
2ty |

= 1/])205 + 1/qug

=1/p+1/q (since [la], =1=]bll,)
=1.
O
HW 1 (Triange Inequality): Prove triangle inequality for p norms. That is, prove that for any
p>1and a,bc R,
la+ b, <llal, + o],
HW 2 (Generalized Means Inequality): For all a,b > 0, prove that
M, = (a” ;r bp> L/

is an increasing function of p. Here p is allowed to take all real values.
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