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1. Introduction

In this lecture we talked about convexity, and some inequalities that follows as a result of it.
We started off with an elegant proof of Caucy-Schwarz inequality. We then defined convexity for
general functions, and then studied various equivalent characterizations for special classes (con-
tinuos functions, differentiable functions etc...) of functions and proved a fundamental inequality
satisfied by convex functions called Jensen’s inequality. Finally, we used Jensen’s inequality to
prove Holder’s inequality.

2. Cauchy-Schwarz Inequality

Theorem 2.1 (Caucy-Schwarz Inequality). Suppose a , b ∈ Rn, then

aTb ≤ ‖a‖ ‖b‖ .

Proof. We first observe that it is sufficient to prove the above inequality when the vectors have unit
norm ‖a‖ = 1 = ‖b‖. This is because if a , b don’t satisfy the unit norm condition, then we can
apply the above inequality to the vectors a

‖a‖ ,
b

‖b‖ .

We therefore assume without loss of generality that ‖a‖ = 1 = ‖b‖ . Now we note the following
simple inequality

xy ≤ x2 + y2

2
,∀x, y ∈ R.

We start from the left hand side

aTb =
∑
i

aibi

≤
∑
i

a2i + b2i
2

= 1/2
∑
i

a2i + 1/2
∑
i

b2i

= 1.

The last inequality follows from the unit norm assumption.

3. Convexity and Jensen’s Inequality

Definition 3.1 (Convexity of a set). A set K ⊂ Rn is said to be a convex set if ∀x ,y ∈ K,λ ∈
[0, 1]

λx + (1− λ)y ∈ K.

In words, a set K is convex if for any two points x ,y ∈ K, the line segment joining x and y is
also contained in K.
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Now we define what it means to say that a function is convex.

Definition 3.2 (Convexity of a function). A function f : K → R is said to be convex function
if dom(f) = K is a convex set, and ∀x ,y ∈ K,λ ∈ [0, 1]

f(λx + (1− λ)y) ≤ λf(x ) + (1− λ)f(y).

When f : R→ R, this means that the line segment joining f(x) and f(y) is above the function
f . Therefore, in this case, we have for all x, y ∈ R and z ∈ [x, y]

f(z) ≤ f(x) +
f(y)− f(x)

y − x
(z − x).

We now give some equivalent characterizations of convexity which are easier to verify.

Continuous functions: If f(x) is a continuous function, then f(x ) is convex iff for all x ,y ∈ K

f(
x + y

2
) ≤ f(x ) + f(y)

2
.

That is, if a function is continuous, then to check if it is convex, we can take λ = 1/2 in
the definition of convex functions.

Differentiable functions: If f : R→ R is differentiable, then f is convex iff for all x, y ∈ R,

f(x) ≥ f(y) + f ′(y)(x− y).

Proof. In one direction, we have from the convexity of f

f(x)− f(y) ≥ f(λx+ (1− λ)y)− f(y)

λ
.

Now letting λ → 0 we get that f(x) − f(y) ≥ f ′(x)(x − y). For the other direction, let
z = λx+ (1− λ)y. We then have

f(x) ≥ f(z) + f ′(z)(x− z)
f(y) ≥ f(z) + f ′(z)(y − z).

Multiplying the first inequality by λ, the second one by 1− λ and adding the two gives

λf(x) + (1− λ)f(y) ≥ f(z) = f(λx+ (1− λ)y).

�
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Twice Differentiable functions: If a function f is twice differentiable, then f is convex iff for
all x in the domain of f

f ′′(x) ≥ 0.

This immediately implies that f(x) = ex and f(x) = − log x are convex functions.

Remark 3.3. Even when a convex function is not differentiable (e.g.. f(x) = |x|), there is a
relaxation of the notion of the derivative(s) for a convex function. At any point x in the domain,
we can assign a non empty convex set of subderivatives, denoted by ∂f(x), such that any c ∈ ∂f(x)
satisfies

f(x) ≥ f(y) + c(x− y).

We now state some inequalities for f(x) = ex that we can now prove that are often very useful.
Since ex is a convex function which is differentiable, we have that for all x, y,

ey ≥ ex + ex(y − x).

Taking x = 0, we immediately get that for all y ∈ R

1 + y ≤ ey.(1)

Next, using the definition of convexity, we have for all x, y ∈ R and z ∈ [x, y]

ez ≤ ex +
ey − ex

y − x
(z − x).

Letting x = 0, y = 1, we have for all z ∈ [0, 1]

ez ≤ 1 + (e− 1)z.(2)

The above results readily generalizes to multidimensional case. Before we state the results, let
us first introduce some notations. For a function f : Rn → R, we define the gradient of f at
x = (x1, ..., xn) ∈ Rn to be

∇f(x ) := (
∂f

∂x1
, ..,

∂f

∂xn
).

This is the generalization of the notion of derivative for functions defined on R. The multivariate
notion of second derivative is called the Hessian of f . Hessian of f at x = (x1, ..., xn) ∈ Rn is the
the n× n matrix

∇2f(x ) :=

(
∂2f

∂xi∂xj

)
ij

.

We are now ready to state the results in the multidimensional case.

Differentiable functions: If f : Rn → R is differentiable, then f is convex iff for all x ,y ∈ Rn,

f(x ) ≥ f(y) +∇f(y)T (x − y).

Note that as in the remark 3.3 for the single variable case, even if a convex function is
not differentiable, at any point y in the domain, we assign a non-empty convex subset
∂f(y) ⊂ Rn) of subgradients. Furthermore, for any v ∈ ∂f(y) the following holds

f(x ) ≥ f(y) + vT (x − y).

Twice Differentiable functions: If a function f is twice differentiable, then f is convex iff for
all x in the domain of f and all ζ ∈ Rn

ζT (∇2f(x ))ζ ≥ 0.
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Jensen’s inequality. Now we can state and prove a fundamental inequality satisfied by convex
functions, from which most other inequalities can be derived.

Theorem 3.4 (Jensen’s Inequality). Suppose f is a convex function f : Rn → R, and X ∈ Rn is
a random variable. Then

f(EX) ≤ E f(X).

Proof. From the convexity of f , we have for all y

f(X) ≥ f(EX) +∇f(EX)T (y −EX).

Since the above inequality holds deterministically for all y , we can replace y with X to get

f(X) ≥ f(EX) +∇f(EX)T (X −EX).

The above inequality should also hold in expectation. This gives

E f(X) ≥ E(f(EX) +∇f(EX)T (y −EX))

= f(EX).

�

Remark 3.5. This proof goes through even for non differentiable functions by using subdgradients.
We can replace ∇f(EX) in the above proof by any subgradient v ∈ ∂f(EX).

4. Holder’s Inequality

Now we use Jensen’s inequality and ideas from Cauchy-Schwarz inequality to prove a general-
ization of the latter. For x ∈ Rn, we let ‖x‖p := (

∑
i |xi|p)1/p. We extend this to p =∞ by letting

‖x‖∞ = maxi |xi|. Holder’s inequality states the following
Holder’s Inequality: Let a , b ∈ Rn. Further ∞ > p ≥ 1 be any number and q ≥ 1 be such that
1
p + 1

q = 1. Then

aTb ≤ ‖a‖p ‖b‖q .
To prove this, we mimic the proof in the first section. One key additional inequality we will need

is stated in the following lemma.

Lemma 4.1 (Young’s Lemma). For scalars x, y ≥ 0 and p, q ∈ (0,∞) such that 1
p + 1

q = 1,

xy ≤ xp

p
+
yq

q
.

Proof. Let us rewrite the above inequality in a way such that we can apply Jensen’s inequality.
Taking the logarithm on both sides, we see that the inequality is equivalent to

log x+ log y ≤ log

(
xp

p
+
yq

q

)
.(3)

With the goal of writing left hand side as an expectation of a random variable, and since 1
p + 1

q = 1,

we rewrite (3) as

1

p
log xp +

1

q
log yq ≤ log

(
xp

p
+
yq

q

)
.

Finally, multiplying throughout by −1, we have

−1

p
log xp − 1

q
log yq ≥ − log

(
xp

p
+
yq

q

)
.
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This immediately follows by apply Jensen’s inequality to the convex function f(x) = − log x and

the random variable X =

{
ap w.p. 1

p

bq w.p. 1
q

.

We are finally ready to prove Holder’s inequality.

Theorem 4.2 (Holder’s inequality). Let a , b ∈ Rn. Further ∞ > p ≥ 1 be any number and q ≥ 1
be such that 1

p + 1
q = 1. Then

aTb ≤ ‖a‖p ‖b‖q .

Proof. As in the proof Cauchy-Schwarz inequality, we note that without loss of generality, we can
assume ‖a‖p = 1 = ‖b‖q. Now,

aTb =
∑
i

aibi

≤
∑
i

api
p

+
bqi
q

(by Young’s Lemma)

= 1/p
∑
i

api + 1/q
∑
i

bqi

= 1/p+ 1/q (since ‖a‖p = 1 = ‖b‖q)
= 1.

�

HW 1 (Triange Inequality): Prove triangle inequality for p norms. That is, prove that for any
p ≥ 1 and a , b ∈ Rn,

‖a + b‖p ≤ ‖a‖p + ‖b‖p .
HW 2 (Generalized Means Inequality): For all a, b ≥ 0, prove that

Mp =

(
ap + bp

2

)1/p

is an increasing function of p. Here p is allowed to take all real values.
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