Lecture 2 : 14 Jan 2015

Concentration Bounds

Lecturer: Sushant Sachdeva

Scribe: Cyril Zhang

INTRODUCTION

Concentration bounds allow us to show that a random variable, under certain conditions, lies near its mean with high probability. We proved the inequalities of Markov, Chebyshev, and Chernoff, and used these to analyze a median-of-means amplification of Morris' approximate counting algorithm.

1. Markov's Inequality

We begin with our most general bound, Markov's inequality.

Theorem 1.1 (Markov's inequality). Let X be a non-negative random variable. Then, for any t > 0,

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$$

Proof. Let ρ be the probability density function of X, so that $\Pr[a \le X \le b] = \int_a^b \rho(x) dx$.

$$\mathbb{E}[X] = \int_0^\infty x \rho(x) dx \ge \int_t^\infty x \rho(x) dx \ge t \cdot \int_t^\infty \rho(x) dx = t \cdot \Pr[X \ge t].$$

A way to think about what this proof is doing: X dominates the scaled indicator variable $T = t \cdot \mathbb{1}_{X \ge t}$, so we have $\mathbb{E}[X] \ge \mathbb{E}[T] = t \cdot \Pr[X \ge t]$.

Markov's inequality gives a rather weak bound when applied directly; the random variables we care about are usually much more highly concentrated. Let's look at a toy example: flip 100 coins. What's the probability that at least 70 of them come up heads? Markov's inequality tells us that it's no greater than 5/7. As we'll see, we can do much better.

2. Chebyshev's Inequality

Theorem 2.1 (Chebyshev's inequality). Let X be any random variable. Then, for any t > 0,

$$Pr[|X - \mu| \ge t] \le \frac{\operatorname{Var}[x]}{t^2}.$$

Proof. Use Markov's inequality on the positive random variable $(X - \mu)^2$, whose expected value is precisely the variance of X:

$$\Pr[|X - \mu| \ge t] = \Pr[|X - \mu|^2 \ge t^2] = \Pr[(X - \mu)^2 \ge t^2]$$
$$\le \frac{\mathbb{E}[(X - \mu)^2]}{t^2} = \frac{\operatorname{Var}[X]}{t^2}.$$

Back to our toy example of 100 coins. The variance of a Bernoulli random variable with parameter p is $(1-p)(-p)^2 + p(1-p)^2 = p(1-p)$. The variance of a sum of independent random variables is the sum of variances. So, with 100 coins, the variance of the number of heads is $100 \cdot \frac{1}{4} = 25$. Chebyshev's inequality with t = 20 gives us a bound of 25/400 = 1/16. Note that we're being a little crude, since the two-tailed bound when we need the one. Much better than Markov's 5/7. But this is not the best we can do; the real answer is around 1.6×10^{-4} .

3. Chernoff Bounds

As we flip more and more coins, we should expect that the number of heads $X^{(n)}$ gets more and more concentrated around the mean. We can ask: how large does n have to be for the probability that you see more than $(1 + \delta)\mathbb{E}[X^{(n)}]$ heads fall below ϵ ?

Markov's inequality says:

$$\Pr\left[X^{(n)} \ge (1+\delta)\mathbb{E}[X^{(n)}]\right] \le \frac{1}{1+\delta}$$

Oops. This doesn't even depend on n. How about Chebyshev?

$$\Pr\left[X^{(n)} \ge (1+\delta)\mathbb{E}[X^{(n)}]\right] \le \Pr\left[|X^{(n)} - \mu| \ge \delta \cdot \mu\right] \le \frac{\operatorname{Var}[X^{(n)}]}{\delta^2 \mu^2}$$
$$= \frac{n/4}{\delta^2 (n/2)^2} = \frac{1}{\delta^2 n}.$$

So, n needs to be at least $\frac{1}{\delta^2 \epsilon}$. This is still much weaker concentration than the true behavior of a sum of many independent coin flips. Chernoff bounds state a tighter result.

Say you have n i.i.d. Bernoulli random variables $\{X_i\}$, each with parameter $\mathbb{E}[X_i] = p$, so that $\mathbb{E}[X^{(n)}] = np := \mu$. We wish to bound $\Pr[X^{(n)} \ge (1 + \delta)\mu]$.

Pick some $\lambda > 0$. We'll obtain a family of inequalities parameterized by λ . Then, apply $x \mapsto e^{\lambda x}$ to both sides:

$$\Pr[X^{(n)} \ge (1+\delta)\mu] = \Pr\left[\exp\left(\lambda X^{(n)}\right) \ge \exp\left(\lambda(1+\delta)\mu\right)\right].$$

Apply Markov's inequality:

$$\leq \frac{\mathbb{E}\left[\exp(\lambda X^{(n)})\right]}{\exp\left(\lambda(1+\delta)\mu\right)}.$$

First, we bound the numerator. Since the X_i 's are independent, expectation is multiplicative:

$$\mathbb{E}\left[\exp(\lambda X^{(n)})\right] = \mathbb{E}\left[\prod_{i=1}^{n} \exp(\lambda X_{i})\right] = \prod_{i=1}^{n} \mathbb{E}\left[\exp(\lambda X_{i})\right].$$

Each $\mathbb{E}[\exp(\lambda X_i)]$ is identical and easy to evaluate:

$$\mathbb{E}[\exp(\lambda X_i)] = p \cdot e^{\lambda} + (1-p) \cdot e^0 = 1 + (e^{\lambda} - 1)p \le \exp\left((e^{\lambda} - 1)p\right),$$

where the last inequality follows from $1 + x \le e^x$, which we showed last class using convexity. So the entire numerator is bounded by

$$\exp\left(n\cdot(e^{\lambda}-1)p\right) = \exp\left(\mu(e^{\lambda}-1)\right)$$

So we have so far

$$\Pr\left[X^{(n)} \ge (1+\delta)\mu\right] \le \frac{\exp\left(\mu(e^{\lambda}-1)\right)}{\exp\left(\lambda(1+\delta)\mu\right)},$$

for all λ . In particular, it's true for $\lambda = \ln(1 + \delta)$. This gives us the strongest statement of the Chernoff bound:

Theorem 3.1 (Messy Chernoff upper bound).

$$\Pr\left[X^{(n)} \ge (1+\delta)\mu\right] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

This is not the form we usually want, but it's the strongest bound we can get by this method. Here's a lemma that gives us a cleaner form:

HW 1: Show that for $\delta \in [0, 1]$, $(1 + \delta)^{1+\delta} \ge \exp\left(\delta + \frac{\delta^2}{3}\right)$. Easy calculus. This gives us, for $0 \le \delta \le 1$,

$$\Pr\left[X^{(n)} \ge (1+\delta)\mu\right] \le \exp\left(\frac{-\delta^2\mu}{3}\right).$$

HW 2: Prove the Chernoff lower bound: for $\delta \in [0, 1]$, $\Pr[X^{(n)} \leq (1 - \delta)\mu] \leq \exp\left(-\frac{\delta^2\mu}{2}\right)$. Same strategy as the upper bound.

Altogether, we have:

Theorem 3.2 (Chernoff bound). Let $\{X_i\}$ be i.i.d. Bernoulli random variables with parameter $p, X^{(n)} = \sum_{i=1}^{n} X_i$, and $\mu = \mathbb{E}[X^{(n)}] = np$. Then, for any $\delta \in [0, 1]$,

$$\Pr\left[X^{(n)} \ge (1+\delta)\mu\right] \le \exp\left(-\frac{\delta^2\mu}{3}\right).$$
$$\Pr\left[X^{(n)} \le (1-\delta)\mu\right] \le \exp\left(-\frac{\delta^2\mu}{2}\right).$$

To guarantee a tail probability less than $\epsilon = \exp\left(-\frac{\delta^2 np}{3}\right)$, we need $n \ge \frac{6}{\delta^2} \ln\left(\frac{1}{\epsilon}\right)$. Back to our example with 70 heads in 100 coin tosses, Chernoff gives us around 3%, not much of an improvement from Chebyshev. But as n grows larger, the Chernoff bound gets even stronger.

Some remarks:

- The δ^2 in the exponent is tight with the Gaussian distribution up to a constant, which is what a sum of i.i.d. Bernoulli variables converges to, by the central limit theorem.
- In probability theory, we call $\mathbb{E}[e^{\lambda X}]$ the **moment generating function** of X. It's a power series where the coefficient of λ^k is the k-th moment of X, scaled by 1/k!. You might also recognize it as the **Laplace transform**.

The same kind of technique allows us to prove Chernoff-like bounds under more general conditions. First, if we have a sum of any (independent) random variables between 0 and 1, the same tail bounds hold. The Bernoulli variable case can thus be thought of as the "worst case" of this result.

Theorem 3.3 (Hoeffding's inequality with identical means). Let $\{X_i\}_{i=1}^n$ be independent random variables such that $0 \le X_i \le 1$ and $\mathbb{E}[X_i] = p$. Let $X^{(n)} = \sum_{i=1}^n X_i$, so that $\mathbb{E}[X^{(n)}] = np := \mu$. Then, the inequalities in Theorem 3.2 hold.

Proof. Identical up to the point where we compute $\mathbb{E}[\exp(\lambda X_i)] = 1 + (e^{\lambda} - 1)p \leq \exp\left((e^{\lambda} - 1)p\right)$.

It will suffice to show $\mathbb{E}[\exp(\lambda X_i)] \leq 1 + (e^{\lambda} - 1)p$, so that the rest of the proof follows identically. Since $e^{\lambda x}$ is convex (as a function of x), it lies below any secant line. If we pick the secant line that runs through (0,1) and $(1,e^{\lambda})$, we find $e^{\lambda x} \leq 1 + (e^{\lambda} - 1)x$ on the support of X_i . Taking expectations on both sides of $e^{\lambda X_i} \leq 1 + (e^{\lambda} - 1)X_i$ gives us the desired inequality. \Box

What if each variable has a different mean? Then, the bounds still hold.

Theorem 3.4 (Hoeffding's inequality with arbitrary means). Let $\{X_i\}_{i=1}^n$ be independent random variables such that $0 \le X_i \le 1$ and $\mathbb{E}[X_i] = p_i$. Let $X^{(n)} = \sum_{i=1}^n X_i$, so that $\mathbb{E}[X^{(n)}] = \sum_i p_i := \mu$. Then, the inequalities in Theorem 3.2 hold.

Proof. In the Chernoff proof, we got a bound on the numerator:

$$\prod_{i=1}^{n} \mathbb{E}\left[\exp(\lambda X_{i})\right] \leq \exp\left((e^{\lambda} - 1)\mu\right)$$

We still have $\mathbb{E}[\exp(\lambda X_i)] \leq 1 + (e_{\lambda} - 1)p_i$. By the AM-GM inequality $(\prod a_i \leq \left(\frac{\sum a_i}{n}\right)^n)$,

$$\begin{split} \prod_{i=1}^n \left(1 + (e^{\lambda} - 1)p_i \right) &\leq \left(1 + (e^{\lambda} - 1)\frac{\sum p_i}{n} \right)^n \\ &\leq \exp\left(n(e^{\lambda} - 1)\left(\frac{\sum p_i}{n}\right) \right) = \exp\left((e^{\lambda} - 1)\mu \right). \end{split}$$

So, again, our proof can proceed identically. \Box

4. Approximate counting

4.1. A sampling algorithm. Suppose you want to count a very large number of objects– so large that you don't have enough memory to store the number. Robert Morris (1978) only had one-byte counters, and needed to count a two-byte number of objects. His approach was to estimate the log of the count by randomly rejecting most of the objects.

Formally, you see a stream of objects, and you want to estimate the number of objects, without having to store huge integers. The algorithm is as follows:

- Initialize $X_0 := 0$.
- Every time you see an object, $X_{i+1} := \begin{cases} X_i + 1 & \text{w.p. } \frac{1}{2_i^X} \\ X_i & \text{otherwise.} \end{cases}$
- Output $2^{X_n} 1$.

Notice: that the process increments the estimator $2^{X_i} - 1$ in expectation:

$$\mathbb{E}[2^{X_n}|X_{n-1}] = \frac{1}{2^{X_{n-1}}} \cdot 2^{X_{n-1}+1} + \left(1 - \frac{1}{2^{X_{n-1}}}\right) \cdot 2^{X_{n-1}}$$
$$= 2^{X_{n-1}} + 1$$

By induction, this gives us $\mathbb{E}[2^{X_n} - 1] = n$.

To get an idea of the concentration, we first compute the variance:

$$Var[2^{X_n} - 1] = Var[2^{X_n}] = \mathbb{E}[(2^{X_n})^2] - \mathbb{E}[2^{X_n}]^2$$
$$= \mathbb{E}[2^{2X_n}] - (n+1)^2.$$

And,

$$\mathbb{E}[2^{2X_n}|X_{n-1}] = \left(1 - \frac{1}{2^{X_{n-1}}}\right) \cdot 2^{2X_{n-1}} + \frac{1}{2^{X_{n-1}}} \cdot 2^{2(X_{n-1}+1)} = 2^{2X_{n-1}} + 3 \cdot 2^{X_{n-1}}.$$

So, by the law of total expectation,

$$\mathbb{E}[2^{2X_n}] = \mathbb{E}[2^{2X_{n-1}}] + 3 \cdot \mathbb{E}[2^{X_{n-1}}].$$

Induction gives

$$\mathbb{E}[2^{2X_n}] = \frac{3}{2}n(n+1) + 1,$$

So we have that the variance of the estimator is

$$\frac{3}{2}n(n+1) + 1 - (n+1)^2 = \frac{1}{2}n^2 - \frac{1}{2}n$$

$$\leq \frac{1}{2}n^2$$

Used alone, this algorithm produces a very erratic estimator. Let's combine multiple copies of it to get something better-behaved.

4.2. Mean of copies. The most natural thing to try is to take a mean of several trials. Suppose we run t independent copies of the algorithm $\{X^{(i)}\}_{i=1}^t$, and let $Z = \frac{1}{t} \sum X^{(i)}$ be our new estimator. Then $\mathbb{E}[Z] = n$, and $\operatorname{Var}[Z] \leq t \cdot \frac{\frac{1}{2}n^2}{t^2} = \frac{n^2}{2t}$. Chebyshev's inequality gives

$$\Pr\left[|Z - n| \ge \delta n\right] \le \frac{\operatorname{Var}[Z]}{\delta^2 n^2} \le \frac{1}{2\delta^2 t}.$$

So, as we increase the number of copies, the variance decreases as 1/t. We can't use Chernoff bounds here to get exponentially decreasing failure probability, since the summands are not bounded by a small range. We'll need a different strategy.

4.3. Median of means. Choose some target failure probability p. Let's use a mean of $t = \frac{3}{2\delta^2}$ copies of the counter as a subroutine, giving us a failure probability of

$$\Pr\left[|Z-n| > \delta n\right] \le \frac{1}{3}.$$

Now, let's use this subroutine r times, getting independent estimators $Z^{(1)}, Z^{(2)}, \ldots, Z^{(r)}$. Consider what happens when we take their median. Call an estimator "wrong" if it lies outside the range $[(1-\delta)n, (1+\delta)n]$. Note that if the median of $\{Z^{(i)}\}$ is wrong, then at least r/2 of the $Z^{(i)}$'s are wrong.

Let $Y^{(i)}$ be the indicator variable for the event that $Z^{(i)}$ is wrong. Then, $W = \sum_{i=1}^{r} Y^{(i)}$ is the number of wrong $Z^{(i)}$'s. Denote $p \stackrel{\text{def}}{=} \mathbf{E}[Y^{(i)}]$. Thus, $\mathbb{E}[W] = pr$, and by our choice of t, we have $p \leq \frac{1}{3}$. Now, use the Chernoff bound on W to bound the probability that it's large enough for the median to be wrong.

$$\Pr\left[W \ge \frac{r}{2}\right] = \Pr\left[W \ge \frac{1}{2p} \cdot pr\right] = \Pr\left[W \ge \left(1 + \frac{1}{2p} - 1\right)\mathbb{E}[W]\right]$$
$$\leq \exp\left(-\left(\frac{1}{2p} - 1\right)^2 \frac{\mathbb{E}[W]}{3}\right) = \exp\left(-\frac{(1 - 2p)^2}{12p}r\right).$$

Since this is a decreasing function of p and r, we see that it suffices to pick $r \ge O(\ln \frac{1}{\epsilon})$ to have $\Pr\left[|\text{median}\{Z^{(i)}\} - n| > \delta n\right] \le \epsilon$, and hence the failure probability falls exponentially.

Notes

The approximate counter algorithm used in this lecture can be found in the original paper by Morris [Mor78]. It is a short, simple, and fun read. The presentation in this lecture is largely from lecture notes on this topic from Jelani Nelson's course at Harvard [WL13].

References

- [Mor78] Robert Morris. Counting large numbers of events in small registers. Communications of the ACM, 21(10):840–842, 1978.
- [WL13] Andrew Wang and Andrew Liu. Lecture notes for CS 229r : Algorithms for Big Data by Jelani Nelson, Fall 2013.