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Concentration Bounds
Lecturer: Sushant Sachdeva Scribe: Cyril Zhang

Introduction

Concentration bounds allow us to show that a random variable, under certain conditions, lies near
its mean with high probability. We proved the inequalities of Markov, Chebyshev, and Chernoff, and
used these to analyze a median-of-means amplification of Morris’ approximate counting algorithm.

1. Markov’s Inequality

We begin with our most general bound, Markov’s inequality.

Theorem 1.1 (Markov’s inequality). Let X be a non-negative random variable. Then, for any
t > 0,

Pr[X ≥ t] ≤ E[X]

t
.

Proof. Let ρ be the probability density function of X, so that Pr[a ≤ X ≤ b] =
∫ b
a ρ(x)dx.

E[X] =

∫ ∞
0

xρ(x)dx ≥
∫ ∞
t

xρ(x)dx ≥ t ·
∫ ∞
t

ρ(x)dx = t · Pr[X ≥ t].

�

A way to think about what this proof is doing: X dominates the scaled indicator variable
T = t · 1X≥t, so we have E[X] ≥ E[T ] = t · Pr[X ≥ t].

Markov’s inequality gives a rather weak bound when applied directly; the random variables we
care about are usually much more highly concentrated. Let’s look at a toy example: flip 100 coins.
What’s the probability that at least 70 of them come up heads? Markov’s inequality tells us that
it’s no greater than 5/7. As we’ll see, we can do much better.

2. Chebyshev’s Inequality

Theorem 2.1 (Chebyshev’s inequality). Let X be any random variable. Then, for any t > 0,

Pr[|X − µ| ≥ t] ≤ Var[x]

t2
.

Proof. Use Markov’s inequality on the positive random variable (X − µ)2, whose expected value is
precisely the variance of X:

Pr[|X − µ| ≥ t] = Pr[|X − µ|2 ≥ t2] = Pr[(X − µ)2 ≥ t2]

≤ E[(X − µ)2]

t2
=

Var[X]

t2
.

�

Back to our toy example of 100 coins. The variance of a Bernoulli random variable with parameter
p is (1 − p)(−p)2 + p(1 − p)2 = p(1 − p). The variance of a sum of independent random variables
is the sum of variances. So, with 100 coins, the variance of the number of heads is 100 · 14 = 25.
Chebyshev’s inequality with t = 20 gives us a bound of 25/400 = 1/16. Note that we’re being a
little crude, since the two-tailed bound when we need the one. Much better than Markov’s 5/7.
But this is not the best we can do; the real answer is around 1.6× 10−4.
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3. Chernoff Bounds

As we flip more and more coins, we should expect that the number of heads X(n) gets more and
more concentrated around the mean. We can ask: how large does n have to be for the probability
that you see more than (1 + δ)E[X(n)] heads fall below ε?

Markov’s inequality says:

Pr
[
X(n) ≥ (1 + δ)E[X(n)]

]
≤ 1

1 + δ
.

Oops. This doesn’t even depend on n. How about Chebyshev?

Pr
[
X(n) ≥ (1 + δ)E[X(n)]

]
≤ Pr

[
|X(n) − µ| ≥ δ · µ

]
≤ Var[X(n)]

δ2µ2

=
n/4

δ2(n/2)2
=

1

δ2n
.

So, n needs to be at least 1
δ2ε

. This is still much weaker concentration than the true behavior of
a sum of many independent coin flips. Chernoff bounds state a tighter result.

Say you have n i.i.d. Bernoulli random variables {Xi}, each with parameter E[Xi] = p, so that

E[X(n)] = np := µ. We wish to bound Pr[X(n) ≥ (1 + δ)µ].
Pick some λ > 0. We’ll obtain a family of inequalities parameterized by λ. Then, apply x 7→ eλx

to both sides:

Pr[X(n) ≥ (1 + δ)µ] = Pr

[
exp

(
λX(n)

)
≥ exp

(
λ(1 + δ)µ

)]
.

Apply Markov’s inequality:

≤
E
[
exp(λX(n))

]
exp

(
λ(1 + δ)µ)

) .
First, we bound the numerator. Since the Xi’s are independent, expectation is multiplicative:

E
[
exp(λX(n))

]
= E

 n∏
i=1

exp(λXi)

 =
n∏
i=1

E
[
exp(λXi)

]
.

Each E[exp(λXi)] is identical and easy to evaluate:

E[exp(λXi)] = p · eλ + (1− p) · e0 = 1 + (eλ − 1)p ≤ exp
(

(eλ − 1)p
)
,

where the last inequality follows from 1 +x ≤ ex, which we showed last class using convexity. So
the entire numerator is bounded by

exp
(
n · (eλ − 1)p

)
= exp

(
µ(eλ − 1)

)
.

So we have so far

Pr
[
X(n) ≥ (1 + δ)µ

]
≤

exp
(
µ(eλ − 1)

)
exp

(
λ(1 + δ)µ

) ,
for all λ. In particular, it’s true for λ = ln(1 + δ). This gives us the strongest statement of the
Chernoff bound:

Theorem 3.1 (Messy Chernoff upper bound).

Pr
[
X(n) ≥ (1 + δ)µ

]
≤

(
eδ

(1 + δ)1+δ

)µ
.
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This is not the form we usually want, but it’s the strongest bound we can get by this method.
Here’s a lemma that gives us a cleaner form:

HW 1: Show that for δ ∈ [0, 1], (1 + δ)1+δ ≥ exp
(
δ + δ2

3

)
. Easy calculus.

This gives us, for 0 ≤ δ ≤ 1,

Pr
[
X(n) ≥ (1 + δ)µ

]
≤ exp

(
−δ2µ

3

)
.

HW 2: Prove the Chernoff lower bound: for δ ∈ [0, 1], Pr[X(n) ≤ (1−δ)µ] ≤ exp
(
− δ2µ

2

)
. Same

strategy as the upper bound.
Altogether, we have:

Theorem 3.2 (Chernoff bound). Let {Xi} be i.i.d. Bernoulli random variables with parameter

p, X(n) =
∑n

i=1Xi, and µ = E[X(n)] = np. Then, for any δ ∈ [0, 1],

Pr
[
X(n) ≥ (1 + δ)µ

]
≤ exp

(
−δ

2µ

3

)
.

Pr
[
X(n) ≤ (1− δ)µ

]
≤ exp

(
−δ

2µ

2

)
.

To guarantee a tail probability less than ε = exp
(
− δ2np

3

)
, we need n ≥ 6

δ2
ln
(
1
ε

)
. Back to our

example with 70 heads in 100 coin tosses, Chernoff gives us around 3%, not much of an improvement
from Chebyshev. But as n grows larger, the Chernoff bound gets even stronger.

Some remarks:

• The δ2 in the exponent is tight with the Gaussian distribution up to a constant, which is
what a sum of i.i.d. Bernoulli variables converges to, by the central limit theorem.
• In probability theory, we call E[eλX ] the moment generating function of X. It’s a power

series where the coefficient of λk is the k-th moment of X, scaled by 1/k!. You might also
recognize it as the Laplace transform.

The same kind of technique allows us to prove Chernoff-like bounds under more general condi-
tions. First, if we have a sum of any (independent) random variables between 0 and 1, the same
tail bounds hold. The Bernoulli variable case can thus be thought of as the “worst case” of this
result.

Theorem 3.3 (Hoeffding’s inequality with identical means). Let {Xi}ni=1 be independent

random variables such that 0 ≤ Xi ≤ 1 and E[Xi] = p. Let X(n) =
∑n

i=1Xi, so that E[X(n)] =
np := µ. Then, the inequalities in Theorem 3.2 hold.

Proof. Identical up to the point where we compute E[exp(λXi)] = 1 + (eλ− 1)p ≤ exp
(

(eλ − 1)p
)

.

It will suffice to show E[exp(λXi)] ≤ 1 + (eλ − 1)p, so that the rest of the proof follows identically.
Since eλx is convex (as a function of x), it lies below any secant line. If we pick the secant line
that runs through (0, 1) and (1, eλ), we find eλx ≤ 1 + (eλ − 1)x on the support of Xi. Taking
expectations on both sides of eλXi ≤ 1 + (eλ − 1)Xi gives us the desired inequality. �

What if each variable has a different mean? Then, the bounds still hold.

Theorem 3.4 (Hoeffding’s inequality with arbitrary means). Let {Xi}ni=1 be independent

random variables such that 0 ≤ Xi ≤ 1 and E[Xi] = pi. Let X(n) =
∑n

i=1Xi, so that E[X(n)] =∑
i pi := µ. Then, the inequalities in Theorem 3.2 hold.
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Proof. In the Chernoff proof, we got a bound on the numerator:
n∏
i=1

E
[
exp(λXi)

]
≤ exp

(
(eλ − 1)µ

)
.

We still have E[exp(λXi)] ≤ 1 + (eλ − 1)pi. By the AM-GM inequality (
∏
ai ≤

(∑
ai
n

)n
),

n∏
i=1

(
1 + (eλ − 1)pi

)
≤
(

1 + (eλ − 1)

∑
pi
n

)n
≤ exp

(
n(eλ − 1)

(∑
pi
n

))
= exp

(
(eλ − 1)µ

)
.

So, again, our proof can proceed identically. �

4. Approximate counting

4.1. A sampling algorithm. Suppose you want to count a very large number of objects– so large
that you don’t have enough memory to store the number. Robert Morris (1978) only had one-byte
counters, and needed to count a two-byte number of objects. His approach was to estimate the log
of the count by randomly rejecting most of the objects.

Formally, you see a stream of objects, and you want to estimate the number of objects, without
having to store huge integers. The algorithm is as follows:

• Initialize X0 := 0.

• Every time you see an object, Xi+1 :=

Xi + 1 w.p. 1
2Xi

Xi otherwise.

• Output 2Xn − 1.

Notice: that the process increments the estimator 2Xi − 1 in expectation:

E[2Xn |Xn−1] =
1

2Xn−1
· 2Xn−1+1 +

(
1− 1

2Xn−1

)
· 2Xn−1

= 2Xn−1 + 1

By induction, this gives us E[2Xn − 1] = n.
To get an idea of the concentration, we first compute the variance:

Var[2Xn − 1] = Var[2Xn ] = E[(2Xn)2]− E[2Xn ]2

= E[22Xn ]− (n+ 1)2.

And,

E[22Xn |Xn−1] =

(
1− 1

2Xn−1

)
· 22Xn−1 +

1

2Xn−1
· 22(Xn−1+1) = 22Xn−1 + 3 · 2Xn−1 .

So, by the law of total expectation,

E[22Xn ] = E[22Xn−1 ] + 3 · E[2Xn−1 ].

Induction gives

E[22Xn ] =
3

2
n(n+ 1) + 1,

So we have that the variance of the estimator is
3

2
n(n+ 1) + 1− (n+ 1)2 =

1

2
n2 − 1

2
n
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≤ 1

2
n2.

Used alone, this algorithm produces a very erratic estimator. Let’s combine multiple copies of
it to get something better-behaved.

4.2. Mean of copies. The most natural thing to try is to take a mean of several trials. Suppose
we run t independent copies of the algorithm {X(i)}ti=1, and let Z = 1

t

∑
X(i) be our new estimator.

Then E[Z] = n, and Var[Z] ≤ t ·
1
2
n2

t2
= n2

2t . Chebyshev’s inequality gives

Pr
[
|Z − n| ≥ δn

]
≤ Var[Z]

δ2n2
≤ 1

2δ2t
.

So, as we increase the number of copies, the variance decreases as 1/t. We can’t use Chernoff
bounds here to get exponentially decreasing failure probability, since the summands are not bounded
by a small range. We’ll need a different strategy.

4.3. Median of means. Choose some target failure probability p. Let’s use a mean of t = 3
2δ2

copies of the counter as a subroutine, giving us a failure probability of

Pr
[
|Z − n| > δn

]
≤ 1

3
.

Now, let’s use this subroutine r times, getting independent estimators Z(1), Z(2), . . . , Z(r). Con-
sider what happens when we take their median. Call an estimator “wrong” if it lies outside the
range [(1− δ)n, (1 + δ)n]. Note that if the median of {Z(i)} is wrong, then at least r/2 of the Z(i)’s
are wrong.

Let Y (i) be the indicator variable for the event that Z(i) is wrong. Then, W =
∑r

i=1 Y
(i) is the

number of wrong Z(i)’s. Denote p
def
= E[Y (i)]. Thus, E[W ] = pr, and by our choice of t, we have

p ≤ 1
3 . Now, use the Chernoff bound on W to bound the probability that it’s large enough for the

median to be wrong.

Pr

[
W ≥ r

2

]
= Pr

[
W ≥ 1

2p
· pr
]

= Pr

[
W ≥

(
1 +

1

2p
− 1

)
E[W ]

]

≤ exp

(
−
(

1

2p
− 1

)2 E[W ]

3

)
= exp

(
−(1− 2p)2

12p
r

)
.

Since this is a decreasing function of p and r, we see that it suffices to pick r ≥ O(ln 1
ε ) to have

Pr
[
|median{Z(i)} − n| > δn

]
≤ ε, and hence the failure probability falls exponentially.

Notes

The approximate counter algorithm used in this lecture can be found in the original paper by
Morris [Mor78]. It is a short, simple, and fun read. The presentation in this lecture is largely from
lecture notes on this topic from Jelani Nelson’s course at Harvard [WL13].
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